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Fig. 1. We propose SAILOR, a novel method for human free-view rendering and reconstruction from very sparse (e.g., 4) RGBD streams with low latency. Our
approach learns a hybrid representation of radiance and occupancy fields, which can handle unseen performers without fine-tuning and generate high-quality
appearance details in the novel view. In addition, it naturally supports portrait rendering and reconstruction without re-training on the corresponding datasets.

Immersive user experiences in live VR/AR performances require a fast and
accurate free-view rendering of the performers. Existing methods are mainly
based on Pixel-aligned Implicit Functions (PIFu) or Neural Radiance Fields
(NeRF). However, while PIFu-based methods usually fail to produce photo-
realistic view-dependent textures, NeRF-based methods typically lack local
geometry accuracy and are computationally heavy (e.g., dense sampling
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of 3D points, additional fine-tuning, or pose estimation). In this work, we
propose a novel generalizable method, named SAILOR, to create high-quality
human free-view videos from very sparse RGBD live streams. To produce
view-dependent textures while preserving locally accurate geometry, we
integrate PIFu and NeRF such that they work synergistically by conditioning
the PIFu on depth and then rendering view-dependent textures throughNeRF.
Specifically, we propose a novel network, named SRONet, for this hybrid
representation. SRONet can handle unseen performers without fine-tuning.
Besides, a neural blending-based ray interpolation approach, a tree-based
voxel-denoising scheme, and a parallel computing pipeline are incorporated
to reconstruct and render live free-view videos at 10 fps on average. To
evaluate the rendering performance, we construct a real-captured RGBD
benchmark from 40 performers. Experimental results show that SAILOR out-
performs existing human reconstruction and performance capture methods.

CCS Concepts: • Computing methodologies→ Image-based rendering;
Mesh geometry models.

Additional Key Words and Phrases: human performance capture, high-
quality human free-view videos, occupancy and radiance fields, hybrid
representation.
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1 INTRODUCTION
The creation of free-viewpoint videos featuring humans is an ac-
tively researched topic in the fields of computer graphics and vi-
sion. It serves as a critical component for a wide range of applica-
tions, including virtual and augmented reality, distance education,
and telecommunications. To provide immersive experiences to the
users, applications like remote presence and teleconferencing [Orts-
Escolano et al. 2016; Zhang et al. 2022b] require capturing high-
fidelity 3D human models from consumer-affordable capture rigs in
real-time with low latency from live video streams.

Recently, neural implicit representations have beenwidely used in
human performance capture. Pixel-aligned implicit functions (PIFu)
can reconstruct dynamic 3D human body surface meshes with de-
tails and textures [Dong et al. 2022; Feng et al. 2022; Li et al. 2020a,b;
Saito et al. 2019, 2020; Yu et al. 2021b], where the surface meshes are
extracted from a reconstructed occupancy field, and the surface tex-
tures are obtained using a trained network for predicting the RGB
colors of surface points. Neural radiance fields (NeRF) are another
increasingly popular family of techniques that leverage coordinate-
based networks to encode volumetric density and color fields. It
may synthesize photorealistic novel-view images with highly de-
tailed 3D space sampling [Gafni et al. 2021; Mildenhall et al. 2020;
Pumarola et al. 2021; Tretschk et al. 2021]. However, Both two lines
of methods still have weaknesses. First, the surface-texture-based
rendering method of PIFu may lead to blurred rendering results
in some cases, and PIFu cannot handle view-dependent effects or
the transparency of human hairs. Second, NeRF suffers from slow
rendering speed and weak generalization ability. Latest generaliz-
able NeRF methods may fail to handle unseen subjects nor novel
image rendering from sparsely captured views [Chen et al. 2021b;
Gao et al. 2022; Jiang et al. 2022; Kwon et al. 2021; Peng et al. 2021b].
Typically, fine-tuning is necessary to achieve high-quality render-
ing results for a new subject [Gafni et al. 2021; Lin et al. 2022; Shao
et al. 2022b; Wang et al. 2021a; Yu et al. 2021a]. Hence, developing a
generalizable method that can create live and photorealistic human
free-viewpoint videos with sparse capture rigs is still challenging.
In this work, we aim to address the above challenge with two

observations. First, we observe that the PIFu and NeRF representa-
tions can be synergized through depth information in such a way
that while NeRF uses global radiance information to synthesize
high-quality views, its shape ambiguity can be reduced by incor-
porating the occupancy field in PIFu, which helps guide surface
reconstruction. Second, we observe that synergizing the PIFu and
NeRF representations demands for accurate depth information, as
relying on image features solely may still yield unreliable shape
estimation results in the occupancy fields, especially under sparse
capture settings. If we can obtain accurate depths, we may constrain
the PIFu surface field and align image features better with surfaces
to model colors in the radiance fields, resulting in a generalization
of the learned human model to novel poses and appearances.

Based on the above two observations, we propose a novel human
performance capture method, SAILOR, for creating high-quality
free-view videos from sparse (e.g., 4) RGBD video streams. It is a

generalizable method that can handle unseen performers without
fine-tuning (see Fig. 1). Our method has three main steps to process
the RGBD video inputs, at the core of which is a novel neural 3D hu-
man representation that takes both advantages of PIFu and NeRF for
high-quality geometry and photorealistic appearance reconstruc-
tion. First, we train a UNet-like [Ronneberger et al. 2015] depth
denoising network to reduce noise and fill possible holes in the raw
depth maps. We condition our method on depth denoising, as it pro-
vides readily robust geometry cues for correcting topological errors
caused by unseen performers/gestures in the live streams. Second,
we propose a novel network (called SRONet) to model neural per-
formers through a combination of occupancy and neural radiance
fields. Specifically, SRONet constructs 3D human surfaces in the soft
occupancy field based on the pixel-aligned denoised depth features,
and renders high-quality appearances in the color field conditioned
on both image-aligned color features and geometry features.We also
construct a tree structure [Liu et al. 2020; Lombardi et al. 2021] from
denoised depths, based on which a novel voxel-denoising scheme is
proposed to constrain the sampling points inside voxels falling on
the body surface during inference. Third, a neural blending-based
ray interpolation scheme is proposed to render novel-view images
in 1K resolution with small computational overheads.
We note that the Unisurf [Oechsle et al. 2021] may be closely

related to ours, as we both combine the occupancy and radiance
fields in one model. Specifically, Unisurf [Oechsle et al. 2021] is
proposed for solid object reconstruction, which essentially adopts a
coarse-to-fine strategy to locate and refine solid object surfaces via
volume rendering of NeRF and surface rendering in the occupancy
field, respectively. However, as Unisurf uses the occupancy field
for rendering, it does not incorporate the pixel-aligned features of
PIFu and therefore is a non-generalizable method. In practice, our
method runs two magnitudes faster than Unisurf in rendering and
can handle unseen performers without any fine-tuning.

To summarize, this work makes the following contributions:
• A novel human performance capture method (called SAILOR)
with a hybrid network (SRONet), which synergizes occupancy
and radiance fields conditioned on a depth denoising process
and its resulting pixel-aligned RGBD features. SAILOR is gen-
eralizable to handle unseen performers under a sparse RGBD
camera setting without fine-tuning.

• An applicable system that incorporates a tree-based structure, a
voxel denoising scheme, a neural blending-based ray interpo-
lation approach, and a parallel computing pipeline. It creates
free-view rendering results in 1K resolution at 10 fps on average.

• A real-captured human benchmark, which contains multi-view
RGBD videos captured from 40 performers (with ∼4,000 frames
per person), covering various actions.

Extensive experiments on performers with diverse gestures, mo-
tions, and clothing, verify the effectiveness of SAILOR against exist-
ing human performance capture methods in terms of reconstruction
and rendering accuracy.

2 RELATED WORK

2.1 Monocular Human Performance Capture
A line of methods is proposed to use monocular videos for human
performance capture. Xu et al. [2018] propose the first markerless
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deep method, which computes a textured template mesh of static
T-pose for each performer, and models the articulated motions and
non-rigid surface deformations via a combination of 2D/3D pose
estimations and silhouette-based surface refinement, respectively.
The T-pose (or A-pose) mesh is then widely adopted [Dou et al. 2017,
2016; Habermann et al. 2021, 2019, 2020; Li et al. 2021; Newcombe
et al. 2015a, 2011; Su et al. 2020; Yu et al. 2018], based on which
motions are modeled by estimating the non-rigid deformations from
the template mesh. Xiang et al. [2020] propose the statistical defor-
mation models for clothing capturing. Zhao et al. [2022c] propose
a dynamic surface network to predict dynamic offsets and texture
maps based on the SMPL [Loper et al. 2015] template and a reference-
based rendering network that combines the predicted offsets and
texture maps to render novel human avatar images.

Pixel-aligned implicit functions (PIFu) [Saito et al. 2019, 2020] show
promising high-resolution reconstruction results of textured objects
compared with previous 3D representations (e.g., SMPL [Loper et al.
2015; Pavlakos et al. 2019], voxels [Zheng et al. 2019], points [Yifan
et al. 2019], and meshes [Alldieck et al. 2019; Zhu et al. 2022]). Li et
al. [2020a] propose an octree-based surface localization method and
a mesh-free rendering method to apply PIFu for monocular human
performance capture. Later methods incorporate pre-computed tem-
plate meshes [Li et al. 2020b], human parsing maps [Chan et al.
2022b], 3DMM [Cao et al. 2022], and SMPL [Chan et al. 2022a; Feng
et al. 2022; Xiu et al. 2022; Zheng et al. 2021] with implicit functions
to represent 3D humans with motions.

Neural radiance field (NeRF) [Mildenhall et al. 2020] is another pop-
ular 3D implicit representation that utilizes classic volumetric ren-
dering to produce free-view images. To handle dynamic scenes, some
methods [Park et al. 2021a; Peng et al. 2023; Pumarola et al. 2021;
Tretschk et al. 2021] extend NeRF by constructing continuous de-
formation fields. The deformation fields typically map the observed
coordinates to canonical coordinates of a template of the target,
following the non-rigid reconstruction-and-tracking scheme [New-
combe et al. 2015b]. Peng et al. [2021b] construct the deformation
field by leveraging a set of structured latent codes to represent
the performer’s local geometry and appearance. In [Chen et al.
2021b], 3D positions, shapes, and poses are incorporated to guide
the construction of the deformation field. These methods [Chen et al.
2021b; Jiang et al. 2022; Peng et al. 2021b] rely on parametric human
models [Joo et al. 2018; Kocabas et al. 2020; Loper et al. 2015] to
handle human topology changes under motions. Recently, Weng et
al. [2022] proposed to model skeletal rigid and non-rigid motions
via a discrete grid and a continuous field, respectively.

Some other methods [Gafni et al. 2021; Hu et al. 2023; Su et al.
2022, 2021; Xian et al. 2021] handle dynamic scenes by conditioning
the NeRF on additional inputs to change the radiance field of the
scene directly. Xian et al. [2021] condition the NeRF on the times-
tamps of the input RGBD video (where D is estimated by a video
depth estimation method), and use depth as supervision to refine
the scene geometry. Gafni et al. [2021] condition the NeRF on a set
of latent codes (computed from video frames and the background
image) and a 3D morphable model (for tracking facial expressions
and poses). The HyperNeRF method [Park et al. 2021b] combines
the deformation field and the conditioning networks on latent defor-
mation and appearance codes. Recently, Kim et al. [2023] extended

the HumanNeRF [Weng et al. 2022] to support rendering of mul-
tiple performers, by introducing a set of latent identity codes and
pose-conditioned codes.

While monocular videos are convenient and of lower cost, a fun-
damental limitation of monocular methods is the shape-radiance
ambiguity caused by partial occlusions. The difference is that our
method utilizes a sparse (e.g., 4) set of RGBD cameras for full-body
human performance capture and can effectively reduce this ambi-
guity by integrating PIFu and NeRF representations.

2.2 Volumetric Human Performance Capture
Volumetric capture methods [De Aguiar et al. 2008; Vlasic et al.
2008] typically leverage multiple cameras to cover the whole capture
volume of performers. A group of methods [Collet et al. 2015; Guo
et al. 2019; Işık et al. 2023; Jiakai et al. 2021; Liu et al. 2009; Vlasic
et al. 2009; Wang et al. 2021b, 2022; Zhang et al. 2022a; Zhao et al.
2022a] leverage high-end studio (tens up to hundreds of) cameras
for accurate 3D reconstruction. Multi-view RGB stereo information
is used in [Işık et al. 2023; Wang et al. 2021b, 2022], while RGB and
infrared (IR) are combined with silhouette [Collet et al. 2015] and
depth [Guo et al. 2019]. These methods are typically unaffordable
for novice users.
Recently, a set of methods has been proposed to capture human

performance from a sparse set (less than ten views) of RGB(D) cam-
eras. Wu et al. [2020] use PointNet++ [Qi et al. 2017] to extract 3D
point cloud features and design a CNN to render novel images, while
the newly rendered images are used to help further improve the
visual hull reconstruction [Matusik et al. 2000]. This method is lim-
ited by the low-resolution noisy point cloud representation. A few
methods [Dong et al. 2022; Saito et al. 2019, 2020; Shao et al. 2022a;
Yu et al. 2021b] combine multi-view RGB(D) information with the
PIFu representation to produce accurate geometry reconstruction
results. However, learning the colors of surface points from image
features of sparse views makes these PIFu-based methods difficult
to produce novel view-dependent and photorealistic appearances.

Another line ofmethods is built upon the generalizable NeRF [Chen
et al. 2021a; Yu et al. 2021a], which conditions the NeRF on pixel-
aligned image features. Some methods [Gao et al. 2022; Kwon et al.
2021] factorize NeRF into a canonical NeRF and a deformation
field, and model the deformation field through learning mappings
from the surfaces of 3D body parametric models to the 3D volume.
In [Peng et al. 2021a], a neural blend weight field in canonical space
is combined with the skeleton-driven deformation [Lewis et al. 2000]
to generate deformation fields. Wang et al. [2021a] combine NeRF
with image-based rendering [Chen andWilliams 1993; Debevec et al.
1998; Hedman et al. 2018], in which the colors and densities of target
view are computed by aggregating the image features of neighbor-
ing source views. Mihajlovic et al. [2022] condition the NeRF on 3D
keypoints to encode robust spatial 3D information. Some methods
also condition NeRF with SMPL or pose [Liu et al. 2021], and texel-
aligned (pose, image, and camera position) features [Remelli et al.
2022] for drivable volumetric avatar rendering.

Recent endeavors are made to mitigate the geometry ambiguities
of NeRF. Zhao et al. [2022b] construct a pose-based deformation field
for modeling geometry under motions. Shao et al. [2022b] propose to
regress both occupancy and densities from multi-view RGB features,
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Fig. 2. Given RGBD streams captured by 4 Azure Kinect sensors as inputs, (1) a Depth Denoising Module first removes noise and fills the holes of raw depths
conditioned on the RGB images. (2)With the denoised depths, a Two-Layer Tree Structure is constructed to store the global geometry in discretization. (3)
Efficient Ray-Voxel Intersection and Points Sampling are performed for rendering. (4) A novel SRONet network is proposed to synergize the radiance and
occupancy fields, for 3D reconstruction and free-view rendering. (5) The outputs of SRONet are then upsampled via Ray Upsampling and Neural Blending to
produce the final results in 1𝑘 resolution.

in which ground-truth occupancy can be involved for geometry su-
pervision. Lin et al. [2022] propose to estimate the depth probability
distribution (i.e., depth and confidence maps) for constraining the
spatial sampling of NeRF near the surfaces. Nonetheless, deriving
geometry proxies (i.e., body parametric models, surface occupancy,
and depth distribution in [Lin et al. 2022; Shao et al. 2022b,c; Zhao
et al. 2022b]) based on RGB information is often not reliable. The
inaccurate local geometry further results in visual blurriness and ar-
tifacts on the appearances, which makes the fine-tuning for unseen
performers inevitable in these methods.
In this work, we propose a depth-conditioned hybrid represen-

tation of PIFu and NeRF to address this geometry/appearance am-
biguity problem of unseen performers. By incorporating accurate
depth, we show that pixel-aligned RGBD features enable accurate
and generalizable surface reconstructions and can guide NeRF to
produce high-fidelity appearances in near-real-time.

3 OUR METHOD
Our method aims to generate high-quality, and high-resolution
free-view videos in near-real time, given N RGB-D streams of
{I𝑖 ,D𝑖 }𝑖=1,...,N captured by a sparse set of Kinect-V4 sensors, where
I and D represent the RGB and depth images, respectively, andN is
set to 4 in our implementation.

As illustrated in Fig. 2, our method contains five steps: (1) Image-
conditioned Depth Denoising F𝑑 removes noise and completes the
holes in the noisy multi-view depth images. (2) Two-layer Tree Con-
struction T divides the human-body volume into two levels, and
stores parent-child voxels of the volume as two sequences of nodes
in the GPU, based on the denoised depths of F𝑑 . (3) For a ray emitted

Fig. 3. Visualization of our depth denoising results and their fused point
clouds on our real captured RGBD images. Our depth denoising network
can reduce noise and fill in the missing regions (e.g., hair and hand regions
marked in black dashed boxes) for the full-body and portrait inputs.

from the target view, Ray-Voxel Intersection records the indexes of
the two-level voxels that intersected with the ray, along with the
depths of the intersected points. Points Sampling then records the
depths in the target view of the sampled points within each voxel.
These sampled points along the ray are located near the 3D human
surface for efficient appearance rendering. (4) For each sampled
point on the ray, our SRONet predicts its RGB and soft occupancy
values, based on the denoised depths and RGB images. The color
and depth of the sampled pixel in the target view are computed via
a blending function. This step processes the rays for an image at 1/4
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Fig. 4. The Two-layer Tree Construction process. (1) Converting the denoised
depth maps into a full-body point cloud via the TSDF-Fusion [Newcombe
et al. 2011]. (2) Building a volume based on the generated point cloud, where
the voxels occupied by points are stored in GPU. (3) Merging the small voxels
(Level 1) into large voxels (Level 2) in a ratio of 64 : 1, and the voxels are
transformed into a node list. During inference, the tree will be merged with
SRONet’s reconstructed volume to eliminate floating voxels outside the
body (red circle).

resolution of the final rendering result. (5) Ray upsampling extends
one emitted ray (in one pixel) into four sub-rays (corresponding
to four sub-pixels that share the same color and depth). Neural
Blending then produces the appearance details for each sub-pixel
by aggregating colors from the nearest two views.

3.1 Image-conditioned Depth Denoising: F𝑑
Accurate geometry information from the depth plays a vital role in
our method for rendering accuracy and stability. However, the raw
depths acquired by Kinect cameras are often noisy and incomplete.
To refine the raw depth, we train an UNet-like [Ronneberger et al.
2015] depth denoising network (denoted as F𝑑 ) to perform the
denoising process as D𝑖

𝑟 𝑓
= F𝑑 (I𝑖 ,D𝑖 )𝑖=1,...,N , where I𝑖 and D𝑖 are

the input RGB and Depth images of view 𝑖 , respectively. F𝑑 helps
remove high-frequency noise, fill the missing parts, and output
a reliable depth map D𝑖

𝑟 𝑓
for our rendering system. To train our

depth denoising network F𝑑 , we employ a training dataset with
high-quality 3D human scans and simulate the depth noise on the
ground-truth depth maps (see Sec. 5). The designed loss functions,
network structure, and training details of F𝑑 are provided in the
supplemental material.
Fig. 3 shows that our depth denoising module performs well on

our real captured data, i.e., removing noise and filling in the missing
regions (e.g., black dashed boxes). However, due to the sparse capture
setting, full-body fused points fromD𝑖

𝑟 𝑓
may still have holes in some

invisible areas (e.g., yellow dashed boxes). We construct the two-
layer tree structure to cover such regions as described next.

3.2 Two-layer Tree Construction: T
To constrain the rendering range to be near the 3D surface of the
human body, we exploit the geometric cue (i.e., denoised depths),
by computing the fused point cloud P𝑟 𝑓 from D𝑖

𝑟 𝑓
and leveraging

P𝑟 𝑓 to construct a Two-Layer Tree (denoted as T ) in the GPU end.

Construction of T . Fig. 4 shows the two-layer tree construction
process. First, we adopt the TSDF-Fusion [Newcombe et al. 2011]
to convert the denoised depths D𝑖

𝑟 𝑓
(𝑖 = 1, ...,N) into a full-body

point cloud P𝑟 𝑓 . Second, based on the fused TSDF volume V𝑡𝑠𝑑 𝑓 ,
we binarize V𝑡𝑠𝑑 𝑓 to generate an occupied volume V𝑜𝑐𝑐 . Third, we
merge the valid voxels with a value 1 into large voxels in a ratio
of 43 : 1 (i.e., each large voxel can have up to 64 child voxels).
Finally, we store all the valid voxels as a global list Lv in the GPU,
where each node in Lv records the index, size, and position (in world
coordinate) of the corresponding voxel. We have implemented T
with CUDA acceleration (∼6ms), which supports the storage of
multiple batches (or performers) simultaneously.

Voxel Denoising via Post-merging. The raw point cloud P𝑟 𝑓 often
has undesirable floating voxels (red circle in Fig. 4). Hence, we
apply a post-merging step to eliminate these voxels during inference.
Specifically, we first use our SRONet (Sec. 3.3) to construct a soft
occupied volume V𝑠𝑜𝑐𝑐 , where voxel values are in [0, 1]. We then
fuse the two volumes V𝑠𝑜𝑐𝑐 and V𝑜𝑐𝑐 with a union operation, as:

V𝑚𝑜𝑐𝑐 (𝑥) =
{

B(V𝑠𝑜𝑐𝑐 (𝑥), 𝛽) | V𝑜𝑐𝑐 (𝑥) V𝑠𝑜𝑐𝑐 (𝑥) ≥ 𝛾
0 𝑒𝑙𝑠𝑒

, (1)

where B(·, 𝛽) is a binarization function with threshold 𝛽 , and 𝛾 is
an occupancy threshold to eliminate external voxels.
Fig. 5 shows one example in which the tree after post-merging

stores voxels on the human surface, producing a better rendering
result. We adopt the surface localization algorithm in MonoPort [Li
et al. 2020a] to accelerate (∼8ms) the extraction of coarse volume
V𝑠𝑜𝑐𝑐 in a resolution of 1283.

To render a novel-view image, we project rays from pixels of the
target view, and perform Ray-Voxel Intersection to identify voxels (in
both levels of T ) that are intersected with the rays, and perform
Points Sampling to sample the points inside the intersected voxels
on the rays (See the supplemental for details).

(a) (b) (c) (d)

Fig. 5. Visual examples of Two-layer tree construction without voxel de-
noising (a) and with voxel denoising (c), and the corresponding novel-view
rendering results (b,d). Our voxel denoising via post-merging can remove
noisy voxels (marked in circles), which further improves rendering quality.

3.3 Generalizable Human NeRF: SRONet
We propose SRONet to Synergize Radiancce and Occupancy fields
with robust depths to learn robust and generalizable human repre-
sentations under sparse views. We use the soft occupancy field to
represent the human body surface, the reconstruction of which is
conditioned on denoised depth D𝑟 𝑓 to ensure accuracy and gener-
alization capability. We then condition the color field of NeRF on
pixel-aligned RGB and geometry features. The pixel-aligned geome-
try features play a key role in producing human textures that can fit
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Fig. 6. Overview of SRONet. (1) OccNet takes denoised depths and a 3D
point as inputs, and predicts the soft occupancy ∈ [0, 1] value of the point.
(2) ColorNet predicts the color value of the point based on the RGB images,
view directions, and the geometric features. (3) We use the soft occupancy
values to compute the weights for blending colors of the sampling points
on a ray, to produce the final pixel color of the novel view.

the local surfaces correctly. Fig. 6 illustrates the network structure
and supervision signals of our proposed SRONet.

Depth-conditioned Occupancy Field. For a sampled point x on the
emitted ray l, we first predict its soft occupancy value 𝑜x ∈ [0, 1]
by aggregating the pixel-aligned depth features of D𝑖

𝑟 𝑓
(𝑖 = 1, ...,N),

where 𝑜x is the probability of the point x locating inside the human
body (𝑜x = 0.5 indicates that the point is on the surface). We use a
sub-network, named OccNet, to model this occupancy field F𝑜 as:

F𝑜 (x,D𝑟 𝑓 ) = 𝑓2 (𝐴𝑣𝑔({𝑓1 (W𝑖 (x), c𝑖 (x))}𝑖=1,...,N)) := 𝑜x, (2)

where W𝑖 = 𝐸𝑑 (D𝑖
𝑟 𝑓
) represents the depth feature map of the

𝑖-th view, and 𝐸𝑑 (·) is the depth encoder. For the projected 2D
image coordinate 𝜋𝑖 (x) and depth 𝑧𝑖 of x in view 𝑖 , W𝑖 (x) is the
fetched depth feature vector at 𝜋𝑖 (x) and c𝑖 (x) = [𝑧𝑖 , 𝑝𝑖 (x)], where
𝑝𝑖 (x) ∈ [−𝛿𝑝 , 𝛿𝑝 ] is the truncated PSDF value computed based on
D𝑟 𝑓 and 𝑧𝑖 , similar to [Dong et al. 2022]. In Eq. 2,W𝑖 (x) along with
c𝑖 (x) are fed into the first implicit function 𝑓1 to obtain the geometric
features. These features are then processed by an average pooling
operator 𝐴𝑣𝑔 and further fed into the second implicit function 𝑓2
for occupancy querying. The queried value 𝑜x is used for both
reconstruction and rendering.

Geometry-conditioned Color Field. We predict the view-dependent
color value cx ∈ R3 by aggregating the pixel-aligned RGB features
of I𝑖 (𝑖 = 1, ...,N), conditioned on the local view direction d𝑖 and
geometric features ft𝑖𝑔𝑒𝑜 , where d𝑖 = R𝑖d with d being the view
direction in world coordinate, and ft𝑖𝑔𝑒𝑜 = 𝑓3 (W𝑖 (x), c𝑖 (x)). We use
another sub-network, named ColorNet, to model color field F𝑐 as:
F𝑐 (x, I, d) = 𝑓5 (H ({𝑓4 (M𝑖 (x),ft𝑖𝑔𝑒𝑜 , d𝑖 , rgb𝑖 )}𝑖=1,...,N)) := cx, (3)

where M𝑖 = 𝐸𝑐 (I𝑖 ) is the rgb feature map in view 𝑖 , and 𝐸𝑐 (·) is the
rgb encoder.M𝑖 (x) and rgb𝑖 ∈ R3 are the fetched rgb feature map
and rgb pixel values of the point, respectively. 𝑓4 and 𝑓5 are both
implicit functions to process features. We implement the feature
fusion process H as a transformer encoder [Vaswani et al. 2017]
with hydra attention blocks [Bolya et al. 2023] and adopt the fully
fused scheme in [Müller et al. 2021] to accelerate this process.

Rendering. To produce the final color Ĉ(l) for the emitted ray l, we
use the unified surface and volume rendering function in [Oechsle
et al. 2021] to blend color vector cx for each sampled point x, as:

Ĉ(l) =
𝑀∑︁
𝑖=1

𝑜x (𝑖)
∏
𝑗<𝑖

(1 − 𝑜x ( 𝑗))cx (𝑖), (4)

where𝜔x (𝑖) = 𝑜x (𝑖)
∏

𝑗<𝑖 (1−𝑜x ( 𝑗)) is the blending weight for the 𝑖-
th point x𝑖 sampled on ray l, and𝑀 is the number of sampled points.
When x𝑖 is far from the body surface, the occupancy value 𝑜x (𝑖) is
close to 0 or 1. Hence, the weight 𝜔x tends to have high response
values only for the points near the surface. This aligns with our
motivation of sampling points inside the surface voxels. Similarly,
we compute depth �̂� (l) of the surface intersected with the emitted
ray by blending depth 𝑑 (𝑖) of points, as �̂� (l) = ∑𝑀

𝑖=1 𝜔x (𝑖)𝑑 (𝑖).
Optimization of SRONet. We adopt two loss functions to supervise

the reconstruction and rendering process of SRONet.
(1) Geometry and Color Synergistic Loss. We first sample point y
around the body surface (bottom part in Fig. 6), and then measure
the difference between the predicted occupancy value 𝑜y and the
ground-truth value 𝑜∗y to train our OccNet to learn global geometric
information. Meanwhile, we penalize the per-ray error between
Ĉ(l) and the ground-truth color C∗ (l) to train both our ColorNet
and OccNet for learning textures and enhancing geometric details.
The two losses work in a synergistic manner, as:

𝐿syn. = `𝑜 ·
∑︁
x∈𝑆

L𝐵 (oy, o∗y) + `𝑐 ·
∑︁
l∈𝑅

L1 (Ĉ(l),C∗ (l)), (5)

where 𝑆 and 𝑅 denote the sampled points and rays set, respectively.
L𝐵 and L1 are the BCE loss and the smooth L1 loss, while `𝑜 and
`𝑐 are the balancing weights.
(2) Depth Consistency Loss. We enhance the consistency between
the predicted depth value �̂� (l) and the GT depth value 𝐷∗ (l) to
improve reconstruction and rendering details, as:

𝐿𝐷 ′ =
∑︁
l∈𝑅

L2 (�̂� (l), 𝐷∗ (l)), (6)

whereL2 is the L2 loss.𝐷∗ (l) is fetched from the rendered GT depth
map. The complete loss function for SRONet is then a combination
of 𝐿syn. and 𝐿𝐷 ′ , as 𝐿syn. + _𝐷 ′𝐿𝐷 ′ , where _𝐷 ′ is a balance term.

3.4 Appearance Upsampling
We propose a fast ray upsampling scheme to further enhance the
rendered image of SRONet with higher resolution and richer details.
Compared to LookinGood [Martin-Brualla et al. 2018], which en-
hances the rendered images, we interpolate each emitted ray into
four sub-rays during the rendering. The color of each sub-ray is
predicted based on the shared color, depth, and features of the emit-
ted ray, and two high-resolution adjacent RGB inputs, via a neural
blending method.
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the image features of the two adjacent views, view directions in two local
coordinates, and two visibility signals as inputs, to produce weights to blend
the emitted ray color with colors of two adjacent high-resolution images.

Ray Upsampling Scheme. As shown in Fig. 7, for an emitted ray l
corresponding to the pixel at (𝑥,𝑦), we first interpolate it into four
sub-rays (denoted as r0, r1, r2, r3), whose emitted source points
are consistent with l, but the sub-pixel positions are assigned as
(𝑥,𝑦), (𝑥 + 0.5, 𝑦), (𝑥,𝑦 + 0.5), (𝑥 + 0.5, 𝑦 + 0.5). Then, we obtain the
ray color Ĉ(l) and the intersected depth �̂� (l) using SRONet. We also
blend the point features ft𝑐𝑜𝑙𝑜𝑟 (output by the hydra attention blocks
H for each sampled point x) for the ray l, via

∑𝑀
𝑖=1 𝜔x (𝑖)ft𝑐𝑜𝑙𝑜𝑟 (𝑖),

to obtain the ray color features ft𝑟𝑎𝑦 . At last, we scatter Ĉ(l), �̂� (l)
and ft𝑟𝑎𝑦 into each sub-ray r𝑖 (𝑖 = 0, 1, 2, 3) to obtain the coarse
sub-ray features. This ray upsampling scheme enables a 2× increase
in spatial resolution, while simply using more rays (4×) takes about
5× more inference time.
Neural Blending Operation. We leverage two adjacent RGB in-

puts (in 1K resolution) to refine the ray upsampling features, similar
to [Zhao et al. 2022b]. Specifically, we first use a UNet to encode the
two adjacent raw RGB images into two RGB feature maps. Given
the intersected depth value �̂� (l) of each sub-ray r𝑖 , we compute the
surface position x ∈ R3 and back-project the surface point to the ad-
jacent two views to fetch the colors C𝑛0 , C𝑛1 , and the RGB features
ft𝑛0 , ft𝑛1 . We then back-project the surface point to the adjacent two
refined depth maps D𝑛0

𝑟 𝑓
, D𝑛1

𝑟 𝑓
to calculate the soft visibility values

𝑂𝑛0 ,𝑂𝑛1 , which can be written as:

𝑂𝑖 = exp(−𝜎𝑣 · (𝑧𝑖 − 𝑑𝑖𝑟 𝑓 )
2), (7)

where 𝑖 is located in {𝑛0, 𝑛1}, and 𝑧𝑖 is the projected depth of the
surface point in view 𝑖 .𝑑𝑖

𝑟 𝑓
is the fetched depth value fromD𝑖

𝑟 𝑓
in the

2D coordinate 𝜋𝑖 (x) of view 𝑖 . 𝜎𝑣 is a weight coefficient determined
by depth units. Hence, 𝑂𝑖 tends to be 1 when x is visible in view 𝑖 ,
and 0 otherwise. Finally, we feed the RGB features (ft𝑛0 and ft𝑛1 ),
two local view directions (d𝑛0 and d𝑛1 ), two visibility values (𝑂𝑛0

and 𝑂𝑛1 ), along with the ray color features (ft𝑟𝑎𝑦 ) into our neural

Stages Operations Time𝑤/𝑜 acc. Time𝑤/ acc.
F𝑑 Depth denoising ≈78ms ≈18ms

HRNets Encoding RGBD images in SRONet ≈76ms ≈19ms

Unet in F𝑏
High-resolution RGB encoding

in neural blending ≈25ms ≈6ms

T Building two-layer tree ≈6ms -
Voxel Denoising Voxel post-merging when inference ≈8ms -

Intersection Detection of voxels intersected by rays.
Recording depths of intersected points ≈10ms -

Points Sampling Sampling points within voxels
along the rays ≈2ms -

Ray Querying Predicting ray colors and depths ≈271ms ≈35ms
Upsampling Ray upsampling and neural blending ≈5ms ≈1ms

Total - ≈481ms < 100ms

Table 1. The running time for each stage of our pipeline 𝑤/𝑜 and 𝑤/ accel-
eration is reported. Note that we use the three alternative streams for 𝑤/
acc., which further reduces the sum time of ≈ 105ms by 9.5%∼19%.

blending network F𝑏 to obtain the blending weightsWx, as:

F𝑏 (x, I,D𝑟 𝑓 , d) = 𝑓6 ({ft𝑖 , d𝑖 ,𝑂𝑖 }𝑖=𝑛0,𝑛1 ,ft𝑟𝑎𝑦) := Wx, (8)

where 𝑓6 is the implicit function, and Wx ∈ R3 is used to blend the
two adjacent colors and the ray color for point x. The final color Ĉr
for a sub-ray r can then be obtained via:Wx · [C𝑛0 ,C𝑛1 , Ĉ(l)]. See
Fig. 7 for illustration and refer to supplemental for training details.

3.5 Parallel Acceleration
We design a parallel acceleration method to leverage multiple GPUs
and a single CPU (2 Nvidia RTX 3090 and an Intel i9-13900k in this
work) to accelerate the rendering. It aims to distribute the workload
regarding input views and ray computations among GPUs, and build
a pipeline to reduce the processing latency for each operation.
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Fig. 8. The parallel computing pipeline of acceleration. Given multi-view
RGBD live data as inputs, we use three data streams to process independent
tasks alternately: (1) I/O & depth denoising, (2) image encoding & tree
building, and (3) SRONet& upsampling. A post-processing& I/O reshape the
outputs of data streams into images for display (a). GPU:0 and GPU:1 handle
half of the workload of each task in parallel and send the corresponding
results to the CPU for data synchronization (b).
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Fig. 9. Preprocessing of the Kinect-V4 raw captured data (upper row) and
the online rendering demo (bottom row) for full body and portrait settings.

Specifically, we divide the SAILOR pipeline into three groups of
operations, and in each GPU we accelerate these groups of opera-
tions with three alternative data streams: (1) I/O (CPU to GPU) and
depth denoising; (2) two-layer tree building and RGBD images encod-
ing (including RGBDs encoding in SRONet and the RGBs encoding
in F𝑏 ); and (3) ray querying in SRONet and neural blending-based
ray upsampling. Finally, the post-processing and IO operations are
used to reshape the color vectors of the emitted rays into images
for display. We allocate half of the workload of each group to one
GPU for parallel inference acceleration.
As illustrated in Fig. 8, GPU-0 handles the RGBD data of views

1 and 3, while GPU-1 handles those of views 2 and 4. Each F𝑑 in
the GPU predicts two refined depths, all of which are sent to the
CPU for data synchronization. The CPU then sends the four reduced
depth maps back to two GPUs for the two-layer tree construction.
The interaction between the CPU and GPUs for image encoding per-
forms in the same way as F𝑑 . We allocate half of the total rays (i.e.,
5122/2) to each GPU, which are fed into SRONet for ray querying
and subsequent upsampling. Moreover, we utilize the surface ren-
dering scheme to accelerate ray querying. After ray synchronization,
we obtain the color vector of 4 × 5122 logits, which is reshaped to
an RGB image in 1𝐾 resolution as the final rendering result. We
also use TensorRT with half-precision to accelerate F𝑑 , our SRONet,
and the neural blending module. Besides, we adopt the fully fused
scheme [Müller et al. 2021] to accelerate all the implicit functions
𝑓𝑖 (𝑖 = 1, ..., 6) and the hydra attention operationH . Tab. 1 reports
the time cost of each main operation in SAILOR. The accelerated
SAILOR can finally render the free-view video in 1K resolution at
around 10 fps. When the camera-target distance in the novel view is

Fig. 10. Some RGB-D examples provided in our real-captured human dataset.
Our dataset involves a variety of human subjects wearing daily clothing
and performing different actions, with clear facial expressions captured.

…
Time Sequence 

Fig. 11. Full-body rendering results of SAILOR on our dataset. Our dataset
can be used to evaluate the novel-view rendering accuracy of a performer
at a single timestamp (upper row) and over a time period (bottom row).

less than 80% of the average distance in the input views, exceeding
the original sampling rate, we will perform bilinear interpolation to
obtain the zoomed rendering results.

Fig. 9 shows the preprocessing steps (upper row) and two online
examples (bottom row). Given 4-view captured RGBD images, our
system performs undistortion (∼1.5ms), background-matting (∼4ms
using TensorRT), image deformation (∼1.2ms, including cropping,
padding, and rotation), and depth-to-color alignment (∼0.13ms) with
acceleration to obtain the RGBD inputs for SAILOR.

4 OUR DATASET
We construct a real-captured human dataset, consisting of 160k+
frames of multi-view RGBD dynamic human motions, captured by
Azure Kinect-V4 from 40 performers (20 female and 20 male actors).
Each actor performed approximately 4,000 frames of action, wearing
daily clothing. Typical actions are listed in Fig. 13.

The dataset for each performer contains captured RGBD sequences
in 8 views, the pre-calibrated camera internal and external parame-
ters, and the foreground segmentation RGB images (produced by
background-matting-v2 [Lin et al. 2021]). The resolutions of the
captured RGB and depth data are 2, 560 × 1, 440 and 1, 024 × 1, 024,
respectively. For novel-view rendering evaluation, we use RGBD
images of 4 fixed perspective views (the interval between two ad-
jacent views is 90 degrees, and the indexes of cameras are 0,4,6,7,
respectively) as inputs. RGBD images of the other four views (i.e.,
indexes of 1,2,3,5) are used to evaluate rendering quality.
Our dataset contains various actions, diverse facial expressions,

and complex geometries. Fig. 10 shows some examples. Our dataset
can be considered a challenging human performance capture bench-
mark for evaluating SAILOR and other rendering methods. Fig. 11
shows some rendering results from SAILOR on this dataset.

5 RESULTS
Training and Evaluation. We train and evaluate our method using
the public available 𝑇𝐻𝑢𝑚𝑎𝑛2.0 [Yu et al. 2021b] dataset, which
contains 500 high-quality 3D human scans. We split the dataset into
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Methods Mesh Normal

P2S×10−2 ↓ Chamfer×10−2 ↓ L2 ×10−1 ↓ Cosine×10−3 ↓
PIFuHD 1.7268 1.7423 0.512 1.576

StereoPIFu 0.5832 0.5425 0.328 1.193
IPNet 0.8563 0.7247 0.196 0.751

PIFu(RGBD) 0.3246 0.3055 0.207 0.816
GTPIFu 0.2733 0.2572 0.188 0.676
Ours 0.2695 0.2739 0.241 0.507

Table 2. Geometric comparisons on the THuman2.0 dataset [Yu et al. 2021b],
between our reconstruction results and those produced by PIFuHD [Saito
et al. 2020], StereoPIFu [Hong et al. 2021], PIFu(RGBD) [Saito et al. 2019],
IPNet [Bhatnagar et al. 2020] and GTPIFu [Dong et al. 2022]. The best and
second best results are marked in bold and underline, respectively.

(b) (c) (d) (e) (f)(a)

Inputs OursComparisons

Fig. 12. Visual comparisons between our reconstruction results and those
produced by existing reconstruction methods. One of four input RGBD
images (a), results of PIFuHD [Saito et al. 2020] (b), IPNet [Bhatnagar et al.
2020] (c), GTPIFu [Dong et al. 2022] (d), our reconstruction results (e), and
our novel-view rendering results (f) are shown, respectively. Our results
contain more realistic details (e.g., boxed regions).

training and test sets with a ratio of 4 : 1. For the input raw depth
maps, we follow [Fankhauser et al. 2015] to synthesize the sensor
noise on D𝑔𝑡 (See the supplemental for details) to produce noisy
depth D. In addition, we also evaluate the rendering performance
of our method on our real-captured dataset.

5.1 Comparisons of Geometry
We compare our method to five state-of-the-art human reconstruc-
tion methods (with available codes), including the PIFuHD [Saito
et al. 2020], StereoPIFu [Hong et al. 2021], PIFu(RGBD) [Saito et al.
2019], IPNet [Bhatnagar et al. 2020] and GTPIFu [Dong et al. 2022]
on our test set. Since PIFuHD and StereoPIFu do not provide training
codes, we directly use their pre-trained models for comparisons.
The other three methods are re-trained using our data. We use Point-
to-Surface (P2S) distance(cm), Chamfer distance(cm), L2 (1𝑒−1), and
Cosine distance (1𝑒−3) as metrics.
Quantitative Comparison. Tab. 2 reports the comparison results

between our method and existing approaches. Among the compared
methods, PIFuHD [Saito et al. 2020] and StereoPIFu [Hong et al.
2021] reconstruct the human body from monocular and dual RGB
images, respectively. The unstable reconstruction process due to a
lack of geometry and view information may degrade their perfor-
mance. IPNet [Bhatnagar et al. 2020] leverages the point cloud, while

PIFu(RGBD) [Saito et al. 2019] and GTPIFu [Dong et al. 2022] utilize
depth information to model geometry information, which result in
more stable reconstruction and higher performance. By incorporat-
ing depth denoising into our rendering model, our method achieves
comparable reconstruction performance to the state-of-the-art re-
construction method GTPIFu [Dong et al. 2022]: SAILOR is better in
terms of P2S and Cosine metrics while GTPIFu achieves the higher
performance under the Chamfer and 𝐿2 metrics. In addition, we
compare SAILOR to DiffuStereo [Shao et al. 2022c] on their released
demo data (0001 and 0029 data of the Thuman2.0 dataset), as their
training code is not available. Given the same 4-view data as inputs,
The Chamfer/ P2S/L2 distances of ours are 0.3120/0.2976/0.0030,
which is better than those of DiffuStereo (0.4612/0.4197/0.0044).

Last, we report comparisons on the real-captured examples (Fig. 13).
The average L1(cm) distances to depth maps for 4 holdout views
are 7.040(PIFuHD), 6.385(IPNet), 0.9051(GTPIFu), and 0.9040(Ours),
showing that our method plays favorably against them.
Visual Comparison. Fig. 12 shows comparisons between our re-

sults and those of the PIFuHD [Saito et al. 2020], IPNet [Bhatnagar
et al. 2020], and GTPIFu [Dong et al. 2022]. While PIFuHD [Saito
et al. 2020] and IPNet [Bhatnagar et al. 2020] tend to produce obvi-
ous geometric artifacts under sparse views (Fig. 12(b,c)), the results
of GTPIFu [Dong et al. 2022] (Fig. 12(d)) and ours (Fig. 12(e)) are
more accurate, as we both exploit the robust geometric cues from
the depth denoising. The face regions of GTPIFu [Dong et al. 2022]
may contain more high-frequency details than ours, as they lever-
age another PIFu to model the face regions separately. However,
this is computationally heavy. Our results contain more accurate
details on some body regions (e.g., wrinkles of clothes) than those of
GTPIFu, since the local high-frequency body geometry information
may be suppressed by the joint optimization of depth denoising
and occupancy prediction in [Dong et al. 2022]. In contrast, the
joint optimization of the occupancy and color fields in our SRONet
exploits the ground-truth 3D and RGBD signals for capturing more
high-frequency geometric details.

5.2 Comparisons of Rendering
We compare SAILOR to six state-of-the-art generalizable render-
ing methods (with available codes), including PixelNeRF [Yu et al.
2021a], IBRNet [Wang et al. 2021a], MPSNeRF [Gao et al. 2022],
NHP [Kwon et al. 2021], KeypointNeRF [Mihajlovic et al. 2022],
NPBG++ [Rakhimov et al. 2022] and PIFu(RGBD) [Saito et al. 2019].
For fair comparisons, we either re-train (unavailable pre-trained
weights) or fine-tune (available pre-trained weights) these meth-
ods on the training set of THuman2.0 dataset [Yu et al. 2021b].
PSNR, SSIM, and MAE are used to measure the rendering accu-
racy. We also report the Learned Perceptual Image Patch Similar-
ity (LPIPS) [Richard Zhang and Wan 2018] for reference. We gen-
erate noise of 5 different degrees (i.e., 0.25cm, 0.5cm, 1.0cm, 1.5cm,
and 2.0cm of Gaussian standard deviation) on the depth maps of
the 3D meshes to evaluate our method against NPBG++ [Rakhimov
et al. 2022] and PIFu(RGBD) [Saito et al. 2019].
Quantitative Comparison. Tab. 3 reports the rendering compar-

isons on the THuman2.0 dataset [Yu et al. 2021b] (upper part) and
our dataset (bottom part). From Tab. 3, we can see that our method
generally outperforms existing rendering methods regarding all
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1 of 4 RGBD PixelNeRF IBRNet MPSNeRF

Kung Fu

Stretching_1

Lifting Legs

Datasets :

Stretching_2

Rocking 
& Walking

THuman2.0

OursNPBG++ PIFu (RGBD)
Target Scene or
Ground Truth Ours (Front)KeypointNeRF

Fig. 13. Visualization of rendering comparisons on our real-captured dataset (row 1-5) and the THuman2.0 dataset [Yu et al. 2021b] (row 6), between our results
and those of PixelNeRF [Yu et al. 2021a], IBRNet [Wang et al. 2021a], MPSNeRF [Gao et al. 2022], KeypointNeRF [Mihajlovic et al. 2022], NPBG++ [Rakhimov
et al. 2022] and PIFu(RGBD) [Saito et al. 2019].
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w/o GT Occ.w/o GT DepthSoft Occ. → DensityInputs

(a) (b)

Hydra → Basic 

(c) (d) (e) (f) (g) (h) (i)

w/o refined depth

Front Back

Ours

Front Back

Upsampled

Portrait

OccMLP→DbMLP 

(j)

Fig. 14. Ablation Study on our real captured dataset. 1 of 4 input RGBD views (a). Reconstruction and rendering results of different ablated versions (b to g).
Our reconstruction results (h). Our rendering results without upsampling (i). Our final rendering results (j).

Models Avg Time (s)↓ THuman2.0 [Yu et al. 2021b] Dataset

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
PixelNeRF ≈ 390.0 30.215 0.938 1.179 0.865
IBRNet ≈ 25.7 34.469 0.963 0.742 0.497

MPSNeRF ≈ 32.2 30.317 0.945 0.866 0.754
NHP ≈ 102.5 31.488 0.957 0.851 0.647

KeypointNeRF ≈ 52.3 31.590 0.953 0.746 0.658
NPBG++ ≈ 5.5 32.136 0.962 0.558 0.533

PIFu(RGBD) ≈ 8.5 33.296 0.967 0.270 0.543
Ours ≈ 0.2 34.882 0.969 0.354 0.392

Metrics Methods (evaluation on our Real-captured Dataset)

PixelNeRF IBRNet MPSNeRF NHP NPBG++ PIFu(RGBD) Ours
PSNR↑ 23.876 25.946 25.172 24.568 25.949 28.254 29.969
SSIM↑ 0.908 0.929 0.925 0.933 0.924 0.950 0.962
LPIPS↓ 0.146 0.110 0.110 0.108 0.0809 0.0428 0.0359

Table 3. Comparisons of rendering results on the THuman2.0 dataset and
our real-captured dataset, produced by our method and existing general-
izable methods. We re-train or fine-tune all competing methods on our
training dataset for a fair evaluation. The rendering time (for images in 1k
resolution) is calculated using a single RTX 3090 GPU as their public codes
do not include a multi-card accelerated rendering manner. The best and
second best results are marked in bold and underline, respectively. Refer to
the supplemental for detailed comparisons of the real-captured data on 10
independent performers.

three objective metrics (i.e., PSNR, SSIM, and MAE) on the Thu-
man2.0 dataset, and along with LPIPS on the real-captured dataset.
Tab. 3 also summarizes the average rendering time of existing
methods and ours to obtain an image of 1𝐾 resolution using a
single RTX 3090 GPU. Our method runs much faster than exist-
ing methods. We also compare our method with GTPIFu [Dong
et al. 2022] (about 31s using MVS-Texturing [Waechter et al. 2014]
to generate a textured mesh), on our real-captured data in Fig. 12.
The PSNR/SSIM/LPIPS of GTPIFu and Ours are 28.610/0.922/0.0289
and 28.444/0.926/0.0388, respectively. For our data in Fig. 13 (1-5
rows), the values are 25.411/0.920/0.105 (KeypointNeRF [Mihajlovic
et al. 2022]), while ours are 29.355/0.958/0.0383. These experiments
verify that our method is able to produce high-quality novel view
rendering results for performers with diverse actions and clothing.
Visual Comparison. Fig. 13 visualizes the qualitative compar-

isons on both our real-captured dataset (first five rows) and the

Ours1 of 4 RGBD MPSNeRFSMPL NHP PIFu (RGBD)

Mesh Rendering

Fig. 15. Our method can render the geometric parts of the clothing correctly,
while SMPL-based methods MPSNeRF [Gao et al. 2022] and NHP [Kwon
et al. 2021] tend to fail, and PIFu(RGBD) [Saito et al. 2019] tends to render
unrealistic details especially in the facial region due to the textured mesh.

THuman2.0 dataset [Yu et al. 2021b] (last row). We can see that
PixelNeRF [Yu et al. 2021a] tends to produce topological errors,
surface distortions, blurry or wrong textures, and sometimes back-
ground noise, as colorimetric constraints are far from enough for
performance capture under sparse views. IBRNet [Wang et al. 2021a]
performs slightly better, especially near the input views, but still
suffers from the same problems as PixelNeRF [Yu et al. 2021a]. Key-
pointNeRF [Mihajlovic et al. 2022] encodes relative spatial 3D in-
formation via sparse 3D keypoints, and MPSNeRF [Gao et al. 2022]
incorporates SMPL [Loper et al. 2015] as topological constraints,
similar to NHP [Kwon et al. 2021]. However, their results typically
have incorrect shapes and textures in regions occluded in the input
views and regions with large/complex motions. NPBG++ [Rakhimov
et al. 2022] leverages the point cloud as the 3D human representa-
tion, and their results typically suffer from missing parts and color
distortion due to the noisy point clouds. PIFu(RGBD) [Saito et al.
2019] performs relatively better among these methods, as they com-
bine depths with surface fields for reconstruction. However, due to
rendering from the textured mesh, inaccurate geometries can lead to
rendering noise. In addition, they cannot handle view-dependent ef-
fects due to no view direction encodings. In contrast, our rendering
results have better edges (shapes) and high-quality texture details.

Fig. 15 further evaluates ourmethod in handling topology changes
of clothing. Since SMPL [Loper et al. 2015] models only represent
the naked human bodies, methods (e.g., MPSNeRF [Gao et al. 2022]
and NHP [Kwon et al. 2021]) based on SMPL representation can-
not reconstruct such topological changes (e.g., red circled regions ).
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Models THuman2.0 [Yu et al. 2021b] Dataset

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
𝑤/𝑜 GT Depth 33.171 0.961 0.348 0.495
𝑤/𝑜 GT Occ. 32.871 0.959 0.356 0.512

𝑤/𝑜 Denoised Depth 32.588 0.955 0.425 0.548
Soft Occ.→ Density 32.441 0.961 0.382 0.494
OccMLP→ DbMLP 33.499 0.962 0.351 0.489
𝑤/𝑜 Upsampling 34.865 0.967 0.291 0.467

Ours 34.882 0.969 0.354 0.392

Models Our Real Captured Dataset

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
𝑤/𝑜 GT Depth 30.225 0.955 0.459 0.647
𝑤/𝑜 GT Occ. 29.637 0.950 0.553 0.712

𝑤/𝑜 Denoised Depth 28.489 0.953 0.549 0.712
Soft Occ.→ Density 29.540 0.950 0.622 0.655
OccMLP→ DbMLP 30.085 0.947 0.675 0.705
𝑤/𝑜 Upsampling 29.890 0.960 0.479 0.674

Ours 30.228 0.968 0.454 0.634

Table 4. Ablation Study on the𝑇𝐻𝑢𝑚𝑎𝑛2.0 dataset [Yu et al. 2021b] (upper
part) and our real captured data (lower part). The best and second best
results are marked in bold and underline, respectively.

In addition, PIFu(RGBD) [Saito et al. 2019] takes advantage of the
raw depth and may somewhat model clothing changes. However, it
tends to generate undesirable results under novel views. In contrast,
our method exploits the denoised depths with a hybrid representa-
tion of surface and color fields, thus effectively reconstructing and
rendering the clothing (e.g., clothing in the bottom part of Fig. 9).

5.3 Ablation Study
We conduct ablation studies on both the 𝑇𝐻𝑢𝑚𝑎𝑛2.0 dataset [Yu
et al. 2021b] (upper part) and our dataset (lower part) in Tab. 4.
Depth & Geometric Supervisions. We first remove the depth and

occupancy supervisions (denoted as “𝑤/𝑜 GT Depth” and “𝑤/𝑜
GT Occ.”, respectively) to train our SRONet. The first two rows
in both sub-tables of Tab. 4 show that the performance degrades
regarding all metrics, especially “𝑤/𝑜 GT Occ.”. Fig. 14(e,d) shows
that the predicted depths and the reconstructed 3D models contain
obvious errors, resulting in low-quality rendering results. These
results indicate that OCC. supervision contributes to our results
effectively by providing global geometric constraints.
Depth Denoising Module: F𝑑 . We then remove the F𝑑 and use

the raw depths (denoted as “𝑤/𝑜 Denoised Depth”) to train SRONet.
Here, we use RGBD images instead of only depth maps as the input
of our OCCNet. Similarly, performance in all metrics drops without
F𝑑 in both datasets (3rd rows). From Fig. 14(b), we can see that the
holes in the depth can result in incomplete rendering results (e.g.,
the head region). Comparing (b) to (h) demonstrates that F𝑑 can
complete the holes and remove the noise in the raw depths, which
helps render high-quality images.

Hybrid Representation: F𝑜 & F𝑐 . We conduct two experiments to
verify the superiority of our hybrid representation.

(1) We replace the soft occupancy field of our OCCNet with the
density field, and replace the color blending function with the vol-
ume rendering function in NeRF (denoted as “Soft Occ.→ Density”).
In such a way, the hybrid representation degrades back to NeRF,
and the results of both datasets show that the performance degrades
accordingly (4th rows). Fig. 14(c) shows that geometric and texture

…
Time Sequence 

Appearance Change
(e.g., clothes, glasses)

Expression 
Change

Fig. 16. Novel-view portrait reconstruction and rendering results of SAILOR
without re-training or fine-tuning. Our method can handle sudden expres-
sion changes and complex geometries such as long hair (1st row), and
significant appearance changes (2nd row, such as wearing glasses and dif-
ferent clothes), and can track the subject with diverse expressions over a
long time period (3rd row).

Models PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓ Time↓
Volume→Surface 34.889 0.964 0.464 0.430 ≈ 112ms

Ours 34.882 0.969 0.354 0.392 ≈ 271ms

Table 5. Comparisons between the volume rendering and surface rendering
on the THuman2.0 dataset [Yu et al. 2021b]. “Volume→surface” indicates
replacing the color blending (Eq. 4) with the surface rendering in our SRONet.
The best results are marked in bold. The reported time (Ours) corresponds
to the process of Ray Querying in Tab. 1.

errors both occur in the reconstructed and rendering results, and
the denoised depths cannot effectively correct these errors.
(2) We investigate the way of DoubleField [Shao et al. 2022b]

by making our OCCNet predict both occupancy and density val-
ues, for reconstruction and rendering, respectively (denoted as
“OccMLP→DbMLP”). In this case, the occupancy and radiance fields
are combined in an implicit manner by sharing the features in OCC-
Net. However, quantitative results (5th rows) show that the perfor-
mance is inferior to ours. By observing Fig. 14(g) we find that this
strategy suffers from local geometry errors (e.g., floating surfaces
and holes in the reconstructed portrait) and produce color artifacts
(e.g., greenish colors on the rendered face). These results suggest
that such an implicit integration of occupancy and radiance fields
may not be ideal, as the density field may affect the surface field neg-
atively (shape-color ambiguities) in the early stage. In contrast, by
discarding the density field and explicitly combining the occupancy
field with the color field, SAILOR is able to avoid this issue.

Appearance Upsampling. We now remove the ray upsampling and
neural blending F𝑏 from SAILOR (denoted as “𝑤/𝑜 Upsampling”).
Tab. 4 (6th rows) show that performance for almost all metrics drops
without the F𝑏 , although the LPIPS metric is slightly improved on
the 𝑇𝐻𝑢𝑚𝑎𝑛2.0 dataset [Yu et al. 2021b]. Considering that LPIPS
is a subjective metric, these results demonstrate that F𝑏 increases
the spatial resolution and improves the rendering quality. Fig. 14(i)
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shows that F𝑏 is able to correct the colors by integrating colors of
neighboring views, especially for portrait rendering.
Rendering Scheme. We note that surface rendering may result

in a fast ray querying in SRONet, as only the surface points cal-
culated using the depths �̂� (l) are involved in ColorNet, which is
suitable for rendering acceleration. We investigate the rendering
scheme by replacing the volume rendering in our SRONet with
surface rendering, denoted as “Volume→Surface”. Results on the
𝑇𝐻𝑢𝑚𝑎𝑛2.0 dataset [Yu et al. 2021b] are reported in Tab. 5. While
we can see that volume rendering and surface rendering yield close
performance in terms of PSNR and SSIM, volume rendering per-
forms better when measured with the LPIPS and MAE metrics. This
provides two choices, i.e., users may switch to using surface ren-
dering for further acceleration or adopting the volume rendering in
our SRONet for a more accurate rendering result.

5.4 Generalization in New Settings
New Camera Setting. Our method does not require the cameras to

be put exactly as the setting (refer to sec 1.4 in the supplemental) of
our capture system. To verify this, we test our method on the real-
captured data in Fig. 13 using a single input view (front view). The
PSNR/SSIM/LPIPS values of two adjacent test views (45 degrees)
are 25.356/0.939/0.0588. Moreover, the ablation studies of sensor
numbers are included in our supplemental.

New Clothing Types. We show that our method can handle scenar-
ios where clothing topology changes (e.g., hats, loose pants, putting
on and taking off coats, in Fig. 9), long hair, as well as handling
accessories such as glasses and phones to some extent. Please refer
to our provided third-person videos for more details.
Portrait Reconstruction and Rendering. Fig. 16 shows our novel-

view portrait rendering and reconstruction results of three per-
formers using SAILOR. Here, we use 3 Azure Kinect-V4 sensors
for capturing RGBDs. It shows that SAILOR can handle some sud-
den expression changes and complex geometries such as long hair
(1st row), appearance changes such as wearing glasses and different
clothes (2nd row), and can track the subject with diverse expressions
over a long time period (3rd row).

6 CONCLUSION
In this paper, we have proposed a novel method (SAILOR) for creat-
ing high-quality human free-view videos from very sparse RGBD
videos with low latency. The core of SAILOR is a depth-conditioned
hybrid representation of PIFu and NeRF, capable of preserving lo-
cally accurate geometry and producing vivid view-dependent tex-
tures. We have proposed a novel network (SRONet) for this hybrid
representation. In addition, we have designed a neural blending-
based ray interpolation scheme, a tree-based voxel denoising scheme,
and a parallel computing pipeline for acceleration. To evaluate ren-
dering performance, we have constructed a real-captured RGBD
benchmark of 40 performers. Experiments show that SAILOR can
handle unseen performers without fine-tuning, outperform existing
human reconstruction and performance capture methods, and can
be applied to human portrait reconstruction and rendering.
Our method does have some limitations. First, our rendering re-

sults may exhibit temporal color/illumination flickering, overlay
artifacts and fail to capture fine details (e.g., hands and fingers), due

to inaccurate matting, camera calibration, and a lack of temporal
modeling. Second, our dataset capture assumes a uniform illumina-
tion. Modeling temporal constraints and complex lighting can be
interesting for future research.
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