
Location-aware Single Image Reflection Removal
Supplementary Material

Zheng Dong1 Ke Xu2,4 Yin Yang3 Hujun Bao1 Weiwei Xu∗1 Rynson W.H. Lau4

1State Key Lab of CAD&CG, Zhejiang University 2Shanghai Jiao Tong University
3Clemson University 4City University of Hong Kong

zhengdong@zju.edu.cn, kkangwing@gmail.com, yin5@clemson.edu, {bao, xww}@cad.zju.edu.cn, Rynson.Lau@cityu.edu.hk

1. Network Architecture.
In Tab. 3 and Tab. 4, we report the detailed parameters

of the SE-ResBlock and CBAM-ResBlock used in our net-
work respectively. Moreover, Tab. 5 illustrates the overall
structure of our network model. Our network can work well
when the width and height of the input images I, T̂i, R̂i, Ĉi

are an integer multiple of 8 since the minimal resolution of
the features that appear in our network is 1/8 of input im-
ages. Setting the resolution to an integer multiple of 8 can
avoid the misalignment solutions caused by convolution and
down-sample operations since our network is based on a re-
current structure. Besides, images of resolution up to 1576
in width and height can be input into our network when in-
ferring on an Nvidia Geforce RTX 2080 Ti GPU.

2. Data Augmentation
In this section, we describe the details of three types

of operations to augment synthetic training images, which
include (1) adding gray-scale training images (Gray); (2)
adding ghosting effects (Ghost); (3) increasing the range
of Gaussian kernel size (IKR). Such operations can gen-
erate training images that cover more real-world reflec-
tion types, as shown in Fig. 1. For clarity, we denote the
ground-truth (GT) transmission and reflection layer images
before gamma correction by T̃, R̃, and their corresponding
gamma-corrected layer images by T, R.

For sampled transmission and reflection layer images
used to synthesize I, the data augmentation procedure first
applies inverse gamma correction to T, R and get T̃, R̃,
then chooses whether to add ghosting effects or use a gray-
scale version of I with a probability of 0.3 or 0.2 respec-
tively. The usage of gray-scale reflection images is an effi-
cient acceleration strategy in the early training of reflection
removal networks. The ghosting effect is used to simulate
the reflective effect of thick glasses [1, 6], which can be for-
mulated as: R̃ = β ·H ⊗K ⊗ R̃, where K is a Gaussian

∗Corresponding author.

kernel; H is a two-pulse kernel(size=13, peak1 = 1 −
√
α

peak2 =
√
α − α), α ∈ [0.8, 1]; β is a reflection rate map

of size 256× 256× 3 cropped from a 560× 560× 3 Gaus-
sian map (The standard deviation is set to 0.3) [5]; ⊗ is the
convolution operation. If the ghosting effect is not chosen
in the first step, all the images will be blurred with a Gaus-
sian filter [5, 9, 13]. The filter kernel size is in the range
of [2, 5], and we linearly increase the kernel range from
[2, 5] to [0.9, 6.0] to cover more variations of the blurring
degree of the reflection images (IKR). Specifically, the aug-
mented reflection layer R̃ is generated by R̃ = β ·K⊗ R̃,
the reflection rate β is the same parameter as in adding a
ghosting effect. We compose the processed reflection im-
ages with transmission images to synthesize Ĩ by the alpha
blending model, i.e., Ĩ = α · T̃ + R̃ in [13], and then per-
form gamma correction for T̃, R̃ and the composited image
Ĩ to get triples {T,R, I}. For sampled real-world images,
the above operations are not performed.

Finally, we apply random rotation (90◦, 180◦, 270◦) and
flipping to all the loaded images to obtain the final train-
ing images as the network’s inputs. After training for 90
epochs, we reduce the Gaussian kernel size to [0.5, 3.5] and
the learning rate to 3e−5 for the fine-tuning of our network
on the synthesized images with strong reflections.

In Tab. 1, we show the ablation study results for our data
augmentation by retraining the model with different com-
binations of data augmentation operations. It can be seen
that our data augmentation (IKR + Gray + Ghost) can en-
hance the performance of the proposed model. It achieves
better average PSNR/SSIM scores, 24.058/0.894, for three
datasets, compared to the results without data augmentation
(PSNR/SSIM: 23.767/0.882).

Data Augmentation SIR2 [7] Zhang et al.[13] Li et al.[5]

PSNR SSIM PSNR SSIM PSNR SSIM
w/o IKR, Ghost, and Gray 23.851 0.889 22.776 0.806 22.850 0.801

+ IKR 24.018 0.896 22.803 0.808 22.247 0.798
IKR + Gray 23.949 0.889 22.167 0.802 22.403 0.833

IKR + Gray + Ghost 24.117 0.901 23.338 0.812 23.451 0.808

Table 1. Data augmentation ablation study.



Figure 1. Examples of our synthetic images. Top: the transmission
layers. Bottom: the synthetic images with reflections. First two
columns: adding ghosting effect. Middle two columns: the blurred
reflections. Last two columns: adding reflected highlights.

3. Kernels learned by LKI and RKI.

Tab. 6 and Tab. 7 list the kernel weights learned by Lapla-
cian kernel initialization (LKI) and random kernel initial-
ization (RKI). Fig. 7 and Fig. 8 show the maps computed
with the two learned kernels. It can be seen that the learned
Laplacian kernel weights with LKI is more efficient to sup-
press low-frequency reflections, compared to the learned
weights with RKI. Our paper’s ablation study also verifies
that the fine-tuned Laplacian weights can improve the SIRR
performance since they are updated according to the reflec-
tion dataset.

4. Evaluation of the β parameter for loss LB
Ĉ

.

When using LB
Ĉ

to supervise the learning of RCMap in
our model, β is the parameter that is used to compute the
GT binary masks, Cgt, to indicate reflection-dominated re-
gions. That is, pixels in Cgt whose values are greater than
β will be regarded as reflection-dominated pixels. There-
fore, their mask value will be set to 1, otherwise 0. To de-
termine the appropriate value for β that leads to the best
performance for LB

Ĉ
, we test the choices of β on SIR2 [7],

Zhang et al. [13] and Li et al. [5] datasets with a set of
values, i.e., β = {0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. Fig. 2 il-
lustrates the results. According to the PSNR/SSIM scores,
we choose the parameter β to be 0.3.

PS
N

R

SS
IM

threshold: β

Figure 2. Evaluation of β for LB
Ĉ

.

5. Evaluation of the detection accuracy and the
protection of non-reflection regions.

Detection accuracy. To evaluate the detection accuracy
of the RDM, we first convert a predicted RCMap into a
binary mask M using a threshold γ = Cmin + 0.5 ∗
(Cmax − Cmin), and then calculate the pixel-wise accu-
racy between the mask M and the GT RCMap Cgt. The
Cgt is computed in the same manner as defined in the
Sec. 5 of our main paper, where the threshold is set to be
max{R̄gray

min + β ∗ (R̄gray
max − R̄gray

min ),β), and the parameter
β is chosen to be 0.3 according to Sec. 4. The mean accu-
racy obtained is 0.818 on the SIR2 dataset. Note that we
compute the accuracy for both reflection-dominated regions
(pixels with value 1 in the binary masks) and transmission-
dominated regions (pixels with value 0 in the binary masks).

As shown in Fig. 3, Cgt can be used to indicate the
reflection-dominated regions. That is why we use it to cal-
culate the detection accuracy. However, we also observe
that Cgt might sometimes mislabel the regions with clearly
visible reflections as transmission-dominated regions (the
third row in Fig. 3). We hypothesize that it is why the de-
tection accuracy calculated above is not high. We treat how
to figure out a good way to define GT reflection-dominated
regions that match reflection-dominated regions perceived
by human eyes as future work.

(a) Input (b) Ground-truth T (c) Cgt: ‖I − T‖
Figure 3. Calculated GT RCMaps used in detection accuracy eval-
uation.
Protection of non-reflection regions. We observe that
our predicted RCMaps can help to protect the non-reflection
regions. We also use the Cgt computed above to evalu-
ate the protection ability of the proposed method for non-
reflection regions. Specifically, we first apply Cgt to the
GT transmission layer image T and the predicted transmis-
sion image T̂ to obtain non-reflection regions separately,
i.e. the regions that contain pixels with mask value 0, and
then calculate the PNSR/SSIM scores there. The results are



shown in the Tab. 2. It can be seen that our network can
achieve higher PSNR/SSIM scores for the image contents
in non-reflected regions.

Index(↑) ERRNet [9] Kim et al. [4] IBCLN [5] Ours
PSNR 26.617 26.840 26.418 27.707
SSIM 0.935 0.931 0.941 0.955

Table 2. Quantitative results on non-reflection protection.

6. Comparison with the variant RKI & LB
Ĉ

.
The qualitative comparison result is shown in Fig. 4. In

this testing case, our network trained using the composition
loss LĈ can detect the reflection regions and remove reflec-
tions (yellow box) better than the network trained with the
variant RKI & LB

Ĉ
.

(a) Input (b) T̂ [RKI + LB
Ĉ

] (c) T̂ [Ours]

(d) Ground-truth T (e) M [RKI + LB
Ĉ

] (f) M [Ours]

Figure 4. Comparison with the variant using RKI & LB
Ĉ

. M: The
binary mask generated according to the RCMap generated by our
network trained with RKI & LB

Ĉ
and LĈ respectively.

7. Evaluate the iteration number N .
To investigate whether increasing N will lead to better

results, we conduct an experiment on N using our network.
On SIR2, the PSNR/SSIM values are 23.662/0.891 (N=1),
23.780/0.894 (N=2), 24.095/0.893 (N=4), 24.005/0.895
(N=5), 23.504/0.889 (N=6), respectively. These values are
lower than (24.117/0.901) when N=3. We hypothesize that
the false removal of T may accumulate when increasing N
(i.e., N > 3) and affects the performance. We would like to
explore how to design a metric that is more consistent with
perceptions to supervise our network in the future.

8. Evaluate network performance when R cov-
ers entire image.

As shown in Fig. 5, we randomly generate three images
with reflections spreading almost all over the images. As
shown in the first two rows, our predicted T contains most
details from GT T, even if reflection-dominated regions are
not clearly labeled in RCMaps. It verifies that the second

stage of our network can efficiently remove weak reflec-
tions without accurate RCMaps as input. The last row of
Fig. 5 shows an extreme case where the reflection domi-
nates the content of the image. Our model can still remove
most reflections from the original image when R is clearly
visible in I. However, reflections from the regions (yellow
box) where RCMap fails to detect are not removed.

(a) I (b) Ours R (c) Ours T ����RCMap(d) T

Figure 5. SIRR results when R covers the whole image. (a) Im-
ages with reflections. (b) Predicted Reflections. (c) Predicted
Transmissions. (d) Ground truth transmissions are shown in col-
umn. (e) Predicted RCMaps

9. More RCMap Results.
How the the predicted RCMaps is improved along with

network iterations for 5 synthesized images is illustrated in
Fig. 6.

(a) I (b) Iter = 1 (c) Iter = 2 ����R(d) Iter = 3

Figure 6. More predicted RCMaps and the GT reflection layers.



10. More Iterative Refinement Results.
In Fig. 9 and Fig. 10, we show four groups of iterative

refinement results of our recurrent network. The improved
transmission layers: T̂i, reflection layers: R̂i, and reflec-
tion confidence maps: Ĉi in iteration i are shown in the two
figures respectively.

11. More Results on Benchmark Datasets.
From Fig. 11 to Fig. 13, we show more results of our

method on the benchmark datasets. We also compare
our method with the state-of-art SIRR methods, including
Zhang et al. [13], BDN [12], RMNet [10], ERRNet [9],
CoRRN [8], Kim et al. [4], and IBCLN [5].

12. Results on Internet Images.
Fig. 14 shows the SIRR results on the images pho-

tographed through glasses collected from Internet. While
these pictures are taken in a variety of scenes, our method
can efficiently reconstruct high-quality transmission layers.

References
[1] Zhixiang Chi, Xiaolin Wu, Xiao Shu, and Jinjin Gu. Single

image reflection removal using deep encoder-decoder net-
work. arXiv preprint arXiv:1802.00094, 2018.

[2] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

[3] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In IEEE Conf. Comput. Vis. Pattern Recog., pages
7132–7141, 2018.

[4] Soomin Kim, Yuchi Huo, and Sung-Eui Yoon. Single image
reflection removal with physically-based training images. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 5164–5173,
2020.

[5] Chao Li, Yixiao Yang, Kun He, Stephen Lin, and John E
Hopcroft. Single image reflection removal through cascaded
refinement. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3565–3574, 2020.

[6] YiChang Shih, Dilip Krishnan, Fredo Durand, and William T
Freeman. Reflection removal using ghosting cues. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3193–3201, 2015.

[7] R. Wan, B. Shi, L. Duan, A. Tan, and A. C. Kot. Benchmark-
ing single-image reflection removal algorithms. In Int. Conf.
Comput. Vis., pages 3942–3950, 2017.

[8] Renjie Wan, Boxin Shi, Haoliang Li, Ling-Yu Duan, Ah-
Hwee Tan, and Alex Kot Chichung. Corrn: Cooperative re-
flection removal network. PAMI, 42(12):2969–2982, 2020.

[9] Kaixuan Wei, Jiaolong Yang, Ying Fu, David Wipf, and
Hua Huang. Single image reflection removal exploiting mis-
aligned training data and network enhancements. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 8178–8187, 2019.

[10] Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, Guoqiang Han,
and Shengfeng He. Single image reflection removal beyond
linearity. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3771–3779, 2019.

[11] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In
So Kweon. Cbam: Convolutional block attention module.
In Eur. Conf. Comput. Vis., pages 3–19, 2018.

[12] Jie Yang, Dong Gong, Lingqiao Liu, and Qinfeng Shi. See-
ing deeply and bidirectionally: A deep learning approach for
single image reflection removal. In Eur. Conf. Comput. Vis.,
pages 654–669, 2018.

[13] Xuaner Zhang, Ren Ng, and Qifeng Chen. Single image
reflection separation with perceptual losses. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 4786–4794, 2018.



Block name Output size Filter size or Setting
SE-ResBlock [3]

Conv 1 + PReLU / ReLU H ×W × C 3× 3, C, stride=1
Conv 2 H ×W × C 3× 3, C, stride=1

SE-Layer
AdaptiveAvgPool2d + Reshape C Pooling output size: 1× 1

Linear 1 + PReLU / ReLU C / reduction C × C/2 (reduction=2)
Linear 2 + Sigmoid C C/2× C (reduction=2)

Reshape 1× 1× C None
Multiplication 1 H ×W × C Input: output of conv 2

Multiplication 2 + Add H ×W × C
multiply by res scale (0.1)

Input: feature before Conv 1

Table 3. The architecture and detailed parameters of SE-ResBlocks [3]. The dimension of the input feature map is H ×W × C, where H
and W are the height and width of the feature map, and C is the channel number. The activation function PReLU is used in RDM & TSM
modules, while ReLU is used in the Image feature branch. The variable reduction is set to 2 in this table.

Block name Output size Filter size or Setting
CBAM-ResBlock [11]

Conv 1 + ReLU H ×W × C 3× 3, C, stride=1
Conv 2 H ×W × C 3× 3, C, stride=1

CBAM-Layer
Channel-attention (Shared MLP)

AdaptiveAvgPool2d 1× 1× C
Input: the output of Conv 2
Pooling output size: 1× 1

Conv 2 + ReLU 1× 1× (C/2) 1× 1, C/2 (reduction=2), stride=1
Conv 3 1× 1× C 1× 1, C, stride=1

AdaptiveMaxPool2d 1× 1× C
Input: the output of Conv 2
Pooling output size: 1× 1

Conv 2 + ReLU 1× 1× (C/2) 1× 1, C/2 (reduction=2), stride=1
Conv 3 1× 1× C 1× 1, C, stride=1

Add + Sigmoid 1 1× 1× C Input: the two outputs of Conv 3
Spatial-attention

Mean H ×W × 1
Input: the output of Conv 2

keep dim=True

Max H ×W × 1
Input: the output of Conv 2

keep dim=True

Concat + Conv 4 + Sigmoid 2 H ×W × 1
Input: the output feature of Mean and Max

7× 7, 1, stride=1

Multiplication 1 H ×W × C
Input: the output feature of Sigmoid 1

Input: the feature before Conv 1

Multiplication 2 H ×W × C
Input: the output feature of Multiplication 1

Input: the output feature of Sigmoid 2
Add H ×W × C Input: the feature before Conv 1

Table 4. The architecture and detailed parameters of CBAM-ResBlocks [11]. The dimension of the input feature map is H ×W ×C. The
variable reduction is set to 2 in this table.



Block name Output size Filter size or Setting
Concat H ×W × 6 Input: the original image I and the transmission layer T̂i−1

Stage 1:
Image feature branch:

Conv 0 + ReLU H ×W × 32 3× 3, 32, stride=1
SE-ResBlock (ReLU, reduction=2) ×6, (Tab. 3)

Reflection detection module (RDM):
Multi-scale Laplacian submodule (MLSM):

Laplacian conv 0 + Concat H ×W × 24
Input: the Concat results

3× 3, 6, stride=1
Conv 1 + PReLU H ×W × 32 3× 3, 32, stride=1

SE-ResBlock (PReLU, reduction=2) ×3, (Tab. 3)
Conv 2 + ReLU H ×W × 32 3× 3, 32, stride=1

Conv 3 + Sigmoid 0 H ×W × 1 3× 3, 1, stride=1; Output: RCMap Ĉi

Transmission-feature suppression module (TSM):
SE-ResBlock (PReLU, reduction=2) ×3, (Tab. 3)

Multiplication H ×W × 32 Input: Ĉi from Sigmoid 0
Concat H ×W × 64 Input: output of Image feature branch

Conv2D LSTM (Input feature size: H ×W × 64, output feature size: H ×W × 32) [2]
Conv 4 + ReLU H ×W × 32 3× 3, 32, stride=1

Conv 5 + ReLU 0 H ×W × 3 3× 3, 3, stride=1; Output: R̂i

Stage 2:
Encoder:

Concat H ×W × 10 Input: I, T̂i−1, R̂i from ReLU 0, Ĉi from Sigmoid 0
Conv 6 + ReLU H ×W × 64 3× 3, 64, stride=1

CBAM-ResBlock (reduction=2) ×1, (Tab. 4)
Conv 7 + ReLU (H/2)× (W/2)× 128 3× 3, 128, stride=2
Conv 8 + ReLU (H/2)× (W/2)× 128 3× 3, 128, stride=1

CBAM-ResBlock (reduction=4) ×2, (Tab. 4)
Conv 9 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=2

Conv 10 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1
Conv 11 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1

CBAM-ResBlock (reduction=8) ×3, (Tab. 4)
diConv 0 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1, dilation=2
diConv 1 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1, dilation=4
diConv 2 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1, dilation=8
diConv 3 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1, dilation=16
Conv 12 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1
Conv 13 + ReLU (H/4)× (W/4)× 256 3× 3, 256, stride=1

Decoder:
Conv 15 + ReLU (H/4)× (W/4)× 3 3× 3, 3, stride=1; Output: T̂1/4

i

deConv 0 + AvgPool2d + ReLU (H/2)× (W/2)× 128
4× 4, 128, stride=2

Input: the input of Conv 15

Add + Conv 16 + ReLU (H/2)× (W/2)× 128
Input: skip connection from the input of Conv 9

3× 3, 128, stride=1
Conv 17 + ReLU (H/2)× (W/2)× 3 3× 3, 3, stride=1; Output: T̂1/2

i

deConv 1 + AvgPool2d + ReLU H ×W × 64
4× 4, 64, stride=2

Input: the input of Conv 17

Add + Conv 18 + ReLU H ×W × 32
Input: skip connection from the input of Conv 7

3× 3, 32, stride=1
Conv 19 + ReLU H ×W × 3 3× 3, 3, stride=1; Output: T̂i

Table 5. The architecture and detailed parameters of our network. The dimension of the input RGB image is denoted as H ×W × 3. Our
Laplacian conv 0 block operates with four scales(original scale’s 1/1, 1/2, 1/4, 1/8) on the concatenation of images {I, T̂i−1}, and then
upsamples their Laplacian maps to the original resolution. The learned kernel weights are described in Tab. 6.



Input Inverse Laplacian map Input Inverse Laplacian map
Figure 7. The original input images and their inverse Laplacian maps computed with the fine-tuned Laplacian kernel Lap in Tab. 6. The
inverse Laplacian maps are obtained in the same way as described in Fig.4 in the paper. We use the first three channels of Lap to process the
original image I, since the last three channels correspond to the processing of the transmission layer T̂i. It can be seen that the fine-tuned
Laplacian kernel Lap can also suppress the low-frequency reflection signals while preserving the high-frequency reflection signals. (blue
and red boxes).

(a) Input (b) M1 (c) M2 (d) M3

Figure 8. Comparison between RKI and LKI on low-frequency reflection suppression. To ease the comparison, we use the same input
image (a) in the second row in Fig. 4 in our paper. M1: inverse RKI map after processing the input image by k̂R in Tab. 7. M2: inverse
Laplacian map without gradient clipping (GC). M3: inverse Laplacian map using both GC and LKI. Matrices in the left bottom of inverse
maps show the learned kernel weights using RKI and LKI at channel index 0. Compared with the map M1, the inverse Laplacian map M2

and M3 can efficiently suppress the low-frequency reflection signals.



Kernel name Channels: Num / Index Kernel weights
Original kernel: kL [0, −1, 0; −1, 4, −1; 0, −1, 0]

Fine-tuned Laplacian kernel: Lap

6 / 0
[ 1.811e−3, −1.0049, 6.135e−3;
−1.0111, 4.0027, −1.0060;
4.766e−3, −1.0013, 0.0102 ]

6 / 1
[ 9.178e−4, −1.0004, 6.982e−3;
−1.0086, 4.0024, −0.9997;

−1.998e−3, −1.0023, 5.798e−3 ]

6 / 2
[ −2.500e−3, −1.0017, 5.400e−3;

−1.0121, 4.0074, −1.0034;
2.136e−4, −0.9975, 8.423e−3 ]

6 / 3
[ 2.398e−4, −1.0142, −4.881e−4;

−1.0128, 4.0073, −1.0161;
6.679e−3, −1.0092, 3.787e−3 ]

6 / 4
[ 2.976e−3, −1.0024, 0.0127;
−1.0073, 3.9949, −1.0033;
9.467e−3, −1.0018, 0.0106 ]

6 / 5
[ 3.622e−3, −1.0026, 8.311e−3;
−1.0078, 3.9986, −1.0030;

1.199e−3, −1.0036, 7.030e−3 ]

Table 6. Fine-tuned Laplacian kernel weights for Lap. The Laplacian kernel weights are shared across scales but fine-tuned separately for
R,G,B channels. Since we concatenate the original image and transmission layer as inputs, there are six sets of fine-tuned Laplacian kernel
weights. It can be seen that the fine-tuned Laplacian kernel weights at each channel are close to the original Laplacian kernel weights.

Kernel name Channels: Num / Index Kernel weights

Kernel: k̂R learned with RKI

6 / 0
[ 0.0198, 0.0091, −0.0086;
0.0141, 0.0254, 0.0014;
0.0316, 0.0368, 0.0303 ]

6 / 1
[ −0.0219, 0.0577, 0.0752;
0.0240, 0.0390, 0.0793;

−0.0599, −0.0073, 0.0128 ]

6 / 2
[ −0.0833, −0.0414, −0.0029;

−0.0161, 0.0309, 0.0325;
−0.0874, −0.0299, −0.0195 ]

6 / 3
[ 0.0049, 0.0211, 0.0490;
−0.0138, 0.0207, 0.0627;

−0.0162, −0.0022, 0.0141 ]

6 / 4
[ −0.0411, −0.362, −0.0024;
−0.0350, −0.0152, −0.0193;
−0.0573, −0.0310, 0.0391 ]

6 / 5
[ 0.0105, 0.0300, 0.0244;
0.0012, −0.152, 0.0149;
−0.0080, 0.0190, 0.0597 ]

Table 7. Kernel weights of k̂R after the convergence of the training with RKI. The kR has the same kernel shape with Lap. Note that the
learned k̂R parameters are different from the parameters of Laplacian kernel kL.



Ground Truth T

I T
^

1 T
^

2 T
^

3

R
^

1 R
^

2 R
^

3

C
^

1 C
^

2 C
^

3

Ground Truth T

I T
^

1 T
^

2 T
^

3

R
^

1 R
^

2 R
^

3

C
^

1 C
^

2 C
^

3

Example 1

Example 2

Figure 9. Illustration of the iterative refinement of transmission layer T̂i, reflection layer R̂i and RCMap Ĉi, Part I. The iteration number
is indexed by the subscript i.



Ground Truth T

I T
^

1 T
^

2 T
^

3

R
^

1 R
^

2 R
^

3

C
^

1 C
^

2 C
^

3

Ground Truth T

I T
^

1 T
^

2 T
^

3

R
^

1 R
^

2 R
^

3

C
^

1 C
^

2 C
^

3

Example 3

Example 4

Figure 10. Illustration of the iterative refinement for transmission layer T̂i, reflection layer R̂i and RCMap Ĉi, Part II. The iteration
number is indexed by the subscript i.



Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

BDN [12]

BDN [12]

BDN [12]

CoRRN [8]

CoRRN [8]

CoRRN [8]

Input RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

Zhang et al. [13] BDN [12]

CoRRN [8]

Figure 11. Qualitative comparisons between our method and five state-of-the-art SIRR methods, Part I.



Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

BDN [12]

BDN [12]

BDN [12]

CoRRN [8]

CoRRN [8]

CoRRN [8]

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

BDN [12]

CoRRN [8]

Figure 12. Qualitative comparisons between our method and five state-of-the-art SIRR methods, Part II.



Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

BDN [12]

BDN [12]

BDN [12]

CoRRN [8]

CoRRN [8]

CoRRN [8]

Input Zhang et al. [13] RMNet [10] ERRNet [9]

Kim et al. [4] IBCLN [5] Ours Ground truth T

BDN [12]

CoRRN [8]

Figure 13. Qualitative comparisons between our method and five state-of-the-art SIRR methods, Part III.



Input Ours Input Ours
Figure 14. Our SIRR results on Internet images.


