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Abstract

This paper proposes a novel location-aware deep-
learning-based single image reflection removal method.
Our network has a reflection detection module to regress
a probabilistic reflection confidence map, taking multi-
scale Laplacian features as inputs. This probabilistic map
tells if a region is reflection-dominated or transmission-
dominated, and it is used as a cue for the network to control
the feature flow when predicting the reflection and trans-
mission layers. We design our network as a recurrent net-
work to progressively refine reflection removal results at
each iteration. The novelty is that we leverage Laplacian
kernel parameters to emphasize the boundaries of strong
reflections. It is beneficial to strong reflection detection
and substantially improves the quality of reflection removal
results. Extensive experiments verify the superior perfor-
mance of the proposed method over state-of-the-art ap-
proaches. Our code and the pre-trained model can be found
at https://github.com/zdlarr/Location-aware-SIRR.

1. Introduction
Reflections often occur when images are photographed

through reflective and transparent media (e.g., glass). Re-
moving undesired reflections enhances the image quality
and benefits many follow-up computer vision tasks, such as
image classification. In reflection removal, an image I with
reflections can be modeled as the weighted additive com-
position of a transmission layer T and a reflection layer R.
Precisely, following the alpha blending model in [4, 23, 57],
we express the composition procedure as:

I = W ◦T+R, (1)
where W here is an alpha blending mask and ◦ indicates
the element-wise multiplication. This model is designed to
approximate the complex physical mechanisms involved in
forming images with reflections.

The task of single image reflection removal (SIRR) is to
recover T from a given image I. It is an ill-posed prob-
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(a) Input (b) Zhang et al. [57] (c) RMNet [47]

(d) ERRNet [46] (e) CoRRN [44] (f) IBCLN [23]

(g) RCMap (h) Ours (i) Ground truth

Figure 1. State-of-the-art methods (b,c,d,e,f) typically fail to re-
cover high-quality transmission layers from strong reflections,
e.g., the highlights. Our method addresses this problem by learn-
ing the reflection confidence map (RCMap) for the detection of the
reflection-dominated regions (g) and reflection removal (h). Im-
ages (a) and (i) are from [46].

lem since the number of unknowns is much more than
the number of equations derived from Eq. 1. Therefore,
priors are necessary to constrain the solution space, such
as natural image gradient sparsity [21, 22], ghosting cues
for thick glasses [34], and relative smoothness that as-
sumes the refection layer is smoother than the transmis-
sion layer [24, 52]. To disambiguate the restoration of
T and R in the gradient domain, several works propose
first to determine the locations of reflection-dominated and
transmission-dominated pixels, and then exploit different
constraints at different locations to improve the reflection
removal results [21, 40, 42]. While these methods are sen-
sitive to the selection of hyperparameters, for instance, the
commonly used gradient magnitude threshold, the detected
location information is proven to be useful to handle strong
reflections. Therefore, such location information is ex-
pected to be beneficial for the neural networks to learn how
the reflection information is encoded in the features. How-
ever, it is rarely investigated in deep learning-based SIRR
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methods [4, 15, 18, 23, 46, 47, 50, 57]. This might cause
ambiguities when strong reflections appear. We observe that
state-of-the-art SIRR methods typically fail to recover high-
quality transmission layers in such cases.

This paper proposes a location-aware deep learning-
based SIRR method for generic reflection removal. Our
network incorporates a novel reflection detection module
(RDM) to detect reflection-dominated regions via learn-
ing multi-scale Laplacian features. The output of RDM is
a probabilistic reflection confidence map (RCMap), which
controls the subsequent feature flow, resulting in signifi-
cantly improved SIRR results. Although this detection-and-
removal strategy has been explored in shadow analysis [3,
12, 13, 16, 31, 45] and rain removal [6, 17, 30, 51, 54, 55]
tasks, they mainly exploit features learned in the RGB do-
main, which are different from our approach in two aspects.
First, motivated by the relative smoothness prior in [24],
which assumes that the characteristics of T and R in the
gradient domain are different, we use the learned Lapla-
cian kernel to emphasize the boundaries of strong reflec-
tions and suppress low-frequency reflections, which is ben-
eficial to improve the quality of RCMaps. Second, RDM
is trained without ground-truth reflection-dominated region
masks. This can avoid the difficulty of defining or labeling
reflection-dominated regions. The inverse RCMap, i.e., 1 -
RCMap, can serve as the weight map W in Eq. 1 and be
used to indicate the transmission-dominated regions. It mo-
tivates us to use Eq. 1 as a loss to control the RDM training.

Our proposed network iteratively restores the transmis-
sion layer from the corrupted input. In each iteration, we
formulate the restoration process in a removal-by-detection
manner. It first detects the reflection-dominated regions
based on the RCMap and then predicts the whole reflec-
tion layer by suppressing the transmission information. Af-
terwards, it restores the transmission layer by jointly lever-
aging the transmission-dominant regions and the predicted
reflection layer. Such a network design decomposes the
complicated SIRR problem into sub-problems and consid-
ers the mutual dependence between reflection and transmis-
sion. As illustrated in Fig. 1, our network can effectively
remove strong reflected highlights.

In summary, the main contributions of our work are:
• We propose a novel SIRR method that iteratively re-

stores the transmission layer from the corrupted input
image. At each iteration, the restoration process is for-
mulated in a removal-by-detection sequential manner.

• We propose a novel reflection detection module
(RDM) to locate the reflection-dominated regions. It
learns a group of multi-scale Laplacian kernel param-
eters to exploit reflection boundary information.

• Extensive experiments show that the proposed
location-aware neural network outperforms state-of-
the-art SIRR methods in removing strong reflections.

2. Related Work
A variety of reflection removal methods, such as multi-

view or video-based [5, 8, 25, 26, 27, 33, 37, 38, 39, 49],
dual-pixel sensor-based [29] and polarization-based [2, 20,
35] methods, have been proposed to restore the transmis-
sion layer through motion or optical cues. Since we focus
on SIRR in this paper, we mainly review the single image
based methods below.

To handle the ill-posed SIRR problem, traditional
optimization-based methods introduce different priors [21,
22]. Observing that reflection layers are usually out of fo-
cus and appear to be more blurry than transmission layers,
Li et al. [24] introduced a relative smoothness prior to dis-
tinguish the gradients of the two layers with different prob-
ability distributions. Shih et al. [34] exploited ghosting cues
to remove reflections when the thickness of the glass cannot
be ignored. Huang et al. [14] proposed a wavelet transform
based regularization method to separate ghosting patterns
from background patterns. Multi-scale depth-of-field (DoF)
analysis based methods [40, 42] were proposed to separate
reflection from transmissions by detecting the reflection-
dominated regions. However, the thresholds in these meth-
ods for determining the reflection regions are vulnerable to
noise. In [1, 52], the Laplacian data fidelity term is used to
suppress the blurry reflections. However, these two meth-
ods cannot effectively remove strong reflections and might
smooth out the transmission layer’s details. In contrast, we
leverage Laplacian features to emphasize the boundaries of
strong reflections as a clue for the network to remove them.

Recently, many deep-learning-based methods [4, 15, 18,
23, 46, 47, 50, 56, 57] were proposed to solve the SIRR
problem by learning task-specific features. Fan et al. [4]
designed a deep neural network, called CEIL-Net, to first
regress the edge map of the transmission layer and then re-
construct the transmission layer. Yang et al. [50] proposed
the BDN, a multi-stage network for estimating two layers
sequentially, where the reflection layer predicted in the pre-
vious stage is used as auxiliary information to guide the
transmission layer reconstruction in the next stage. Li et
al. [23] proposed the IBCLN method, which is an LSTM
based recurrent network for concurrently refining the results
of the predicted reflection and transmission layers. Wan et
al. [44] proposed a feature-sharing strategy and a statisti-
cal loss for removing the strong reflections within local re-
gions. They further proposed to study the face reflection
removal problem in [43]. Zhang et al. [56] proposed to
explore the edge hints in the user-specified regions to sep-
arate the reflection and transmission layers. Some meth-
ods proposed to generate more representative training data.
Jin et al. [15] proposed multiple data generation models.
Wen et al. [47] proposed SynNet to generate images with
reflections beyond linearity. Wei et al. [46] introduced an
alignment-invariant loss to utilize the misaligned images as
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Figure 2. The architecture of our recurrent SIRR network. Stage 1: predict the RCMap and the reflection layer. “x4” indicates that the SE
(Squeeze-and-Excitation) residual block [11] is repeated 4 times. Stage 2: predict the transmission layer. CBAM: Convolutional Block
Attention Modules [48]. The output transmission image at iteration i− 1 will be fed back to the network as the input of iteration i, and T̂0

is initialized as I, 1/N indicates the scaling ratio, i.e., H / N × W / N, where H, W are the height and width of the input image.

the real-world training dataset. Kim et al. [18] proposed a
physics-based rendering method to render realistic images
with reflections. Unlike these methods, this paper explores
how to incorporate the location information of reflections
into the network for controlling the feature flow.

Many loss terms were used to boost the SIRR perfor-
mance [18, 23, 46, 47, 50, 57], e.g., the VGG-based per-
ceptual loss, exclusion loss in the gradient domain, and ad-
versarial loss to prevent the blurring effects. In this paper,
a new composition loss without using the GT reflection-
dominated region masks is proposed to train our RDM.

3. Method
Our network is a recurrent network, as illustrated in

Fig. 2. In each iteration i, our network takes the original
image I and the transmission layer T̂i−1 predicted in the
previous iteration i− 1 as inputs, and predicts the transmis-
sion layer T̂i to continue the iteration. T̂0 is initialized as
I. The recurrent structure of our network is inspired by IB-
CLN [23]. However, different from jointly estimating the
transmission and reflection layers in IBCLN, we design our
model to reconstruct the transmission layer T̂i conditioned
on the RCMap and the restored reflection layer at each it-
eration. The step-by-step refinement results of reflection
removal are shown in Fig. 3.

Like BDN [50], each iteration of our network is divided
into two stages to restore two layers sequentially. However,

we leverage RCMap to control the between-stage informa-
tion flow. In the first stage, we predict the reflection layer
R̂i and RCMap Ĉi by taking I and T̂i−1 as inputs. We
denote the first stage as the function GR:

R̂i, Ĉi = GR(I, T̂i−1). (2)

This stage mainly consists of two modules: the reflection
detection module (RDM) and the transmission-feature sup-
pression module (TSM). Specifically, The RDM takes I and
T̂i−1 as inputs and predicts the confidence map Ĉi using
features from a multi-scale Laplacian sub-module (MLSM).
Next, the TSM is used to suppress the Laplacian features
within transmission-dominated regions via an element-wise
multiplication between the features and Ĉi. Afterwards, the
suppressed features and the image features are concatenated
as the inputs of an LSTM [10] block to estimate R̂i. In our
work, R̂i and Ĉi are mainly used as cues to facilitate the
reconstruction of transmission layers.

In the second stage, we predict the transmission layer T̂i

with the input of I, T̂i−1 as well as R̂i, 1− Ĉi computed in
the first stage. We denote the second stage as a function GT

which can be described as:

T̂i = GT (I, T̂i−1, R̂i, 1− Ĉi). (3)

Notice that we utilize the inverse confidence map, i.e.
1−Ĉi, in this stage. Since the transmission layer dominates
at regions where 1 − Ĉi have a high value, we expect this
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(a) I (b) R1 (c) T1 (d) R 2 (e) T2 (f) R3 (g) T3 (h) T
^ ^ ^ ^ ^ ^

Figure 3. The gradual refinement of reflection removal results after each iteration. The input image I is taken in front of a window glass.

(a) Input (c) Inverse Laplacian map (b) Inverse edge map 

Figure 4. Two inverse edge / Laplacian maps along with the input
images. We compute edge map E using the method in [4] to obtain
an image ranging between 0 and 1. Similarly, we compute abso-
lute Laplacian values through convolution with kernel kL, then
normalize each Laplacian value to obtain a map L. However, we
compute two inverse maps, i.e., 1−E, 1−L for better visualiza-
tion. Thus, value 0 in the gradient domain is mapped to 1 in the
inverse maps.

map to help the network learn weights to encode the reflec-
tion information in an adaptive manner, which should bene-
fit the reconstruction of the transmission layer. For the net-
work structure in this stage, we follow the contextual auto-
encoder network in [30], and additionally leverage CBAM
(Convolutional Block Attention Module) [48] blocks after
Conv and ReLU to compute the channel-wise and spatial at-
tention. Please refer to Sec.1 in the supplemental material
for detailed network architecture.
Multi-scale Laplacian Features. We observe that the
Laplacian operator, a second-order differential operator, can
suppress the low-frequency reflections better. As illus-
trated in Fig. 4, low-frequency reflections are less evident
in the inverse Laplacian map than in the inverse edge map,
which suggests that the Laplacian operator suppresses low-
frequency reflections more effectively. In contrast, strong
reflections that have hard boundaries can not be suppressed
by the Laplacian operator. It is possible that the differ-
ence between I and T caused by strong reflections be-
comes more obvious in the Laplacian domain. We assume
such a behavior of the Laplacian operator is beneficial to
detect reflection-dominated regions and thus concatenate
these two images to form Xin = [I, T̂i−1] as inputs to ob-
tain multi-scale Laplacian features.

For the purpose of multi-scale Laplacian feature learn-
ing, we down-sample Xin through scaling the height and
width of input images using bi-linear interpolation with
the following factors: 1/2, 1/4, 1/8 [7]. The down-

(a) I (b) Iter = 1 (c) Iter = 2 ����R(d) Iter = 3

Figure 5. Improvement of the RCMaps during iterations. Note that
the reflection-dominated regions are gradually evident and accu-
rate. Refer to Sec. 9 of the supplemental material for more results.

sampled results are denoted by X↓
2,X

↓
4,X

↓
8 respectively.

We utilize a convolution kernel with weights initialized
to be a 3 × 3 Laplacian kernel, denoted by kL =
[0,−1, 0;−1, 4,−1; 0,−1, 0], to obtain the second deriva-
tive signal from Xin. We allow the network to fine-tune the
Laplacian kernel parameters to better extract Laplacian fea-
tures, where the fine-tuned parameters are denoted as Lap.
During training, we utilize gradient clipping (0.25 in our ex-
periments) to make sure that the learned kernel stays close
to the original kernel kL.

After the Laplacian convolution block in Fig. 2, the up-
sampling operation U↑

j is applied to the multi-scale Lapla-
cian feature maps to restore their original size, where j is the
sampling rate. Precisely, given the images X↓

j (j = 2, 4, 8)
and Xin, the output features Xout can be written as:

Xout = Concat(Lap(Xin), U
↑
j (Lap(X

↓
j )))j=2,4,8, (4)

where Concat is the concatenation operation.
Finally, taking Xout as input, RDM predicts the reflec-

tion confidence map Ĉ from the Laplacian features. We
employ three Squeeze-and-Excitation Residual Block (SE-
ResBlocks) [11] to get efficient multi-channel Laplacian
features, where each block comprises of three layers of SE-
ResNet, then the PReLU function [9] is used to activate the
features while keeping the negative values. These combined
blocks denotes as fLap. Thus, given the features Xout, the
map Ĉ can be described as:

Ĉ = Sigmoid(Conv(fLap(Xout))). (5)

The improvement of the predicted RCMaps for two synthe-
sized images along with iterations is illustrated in Fig. 5.
Transmission-feature suppression module. In this mod-
ule, we employ three SE-ResBlocks to refine the Laplacian
features and then multiply the features by Ĉi for the pur-
pose of transmission features suppressing. Instead of pre-
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dicting R̂i with RCMap Ĉi as input, just like predicting
T̂i in the second stage, we empirically found that suppress-
ing the part of Laplacian features belong to transmission-
dominated regions benefits the reflection layer prediction.
It also leads to a relatively simple network design by con-
catenating the features computed with Xin and the sup-
pressed Laplacian features as the input to the LSTM [10]
block. That is, the same encoder-decoder network structure
in the second stage is not used in the first stage to reduce the
number of network parameters.

4. Training Loss

In this section, we describe the four loss functions used
in the training of our network. For clarity, we denote the
ground-truth transmission and reflection layers by T,R,
the predicted transmission and reflection layers at iteration
i as T̂i, R̂i respectively, and inverse gamma correction as a
function ginv . The iterations number used in our recurrent
network is denoted by N .
Composition Loss. The composition loss is proposed to
guide the training of RDM for predicting Ĉi and supervise
T̂i, R̂i at each iteration using training images synthesized
by the following linear alpha blending model in [57]:

Ĩ = α · T̃+ R̃ (6)

where α is a scalar, T̃ = ginv(T) and R̃ = ginv(R).
Firstly, since the map 1−Ĉi can serve as the weight map

W in Eq. 1, we can compose an image Îi by the following
formula using gamma corrected T and R:

Îi = (1− Ĉi) ◦T+R, (7)

where ◦ is an element-wise production operation. We for-
mulate the loss for RCMap as follows:

LĈ =
∑

I,T,R∈D

N∑

i=1

θN−iLMSE(I, Îi), (8)

where LMSE indicates the mean squared error, θ is an at-
tenuation coefficient to indicate the strength of supervision
and we set it to 0.85.

Secondly, same as IBCLN [23], we adopt Eq. 6 to form a
residual loss to guide the prediction of T̂i, R̂i in two forms:
Îgi = α · ginv(T) + ginv(R̂i) and Îgi = α · ginv(T̂i) +
ginv(R̂i), where α is a known scalar used to synthesize
training images. We use Eq. 8 to compute the difference
between Îgi and ginv(I), and denote the loss as Lres. The
composition loss for the synthesized images is defined as:

Lcomp = LĈ + Lres. (9)

Perceptual Loss. We use VGG-19 network [36] pre-
trained on ImageNet [32] dataset to extract features for the
computation of our perceptual loss. This loss takes multi-

scale images as inputs and can be written into:

Lp =
∑

Tj∈D

∑

j=1,3,5

γjLV GG(T
j , T̂j

N ), (10)

where LV GG denotes the l1 loss between VGG features.
T̂j

N indicates the output of the last jth layer of the autoen-
coder in stage 2 at iteration N, and Tj indicates the ground
truth that has the same scale as T̂j

N . We set γ1 = 1, γ3 =
0.8, γ5 = 0.6 respectively. For LV GG, we use the layers
‘convk 2’ (k = 1, 2, 3, 4, 5) of the standard VGG-19 net.
Fig. 2 shows how the network computes T̂j

N .
Pixel and SSIM Loss. The pixel loss is used to penalize
the pixel-wise difference between T and T̂i. Here, we uti-
lize l1 norm loss, denoted as L1, to compute the absolute
difference. We define the pixel loss as:

Lpixel =
∑

T∈D

N∑

i=1

θN−iL1(T, T̂i), (11)

where θ is set to 0.85 as well.
It is verified that the SSIM(structural similarity index)

loss combined with l1 loss perform better than l2 loss in
image restoration [58]. Therefore, we also adopt LSSIM

i =
1− SSIM(T, T̂i) in each iteration i as a loss term, which
can be written into:

LSSIM =
∑

T∈D

N∑

i=1

θN−iLSSIM
i , (12)

where the setting of θ is same as Eq. 11. We denote the
mixture of SSIM and pixel loss as Lmix and define it as:

Lmix = βLSSIM + (1− β)Lpixel, (13)

where β is set to 0.84, following the design in [58].
Adversarial Loss. To improve the quality of the restored
images, we further add an adversarial loss. We adopt a
multi-layer discriminator network D to assess the quality
of images and define the adversarial loss as:

Ladv =
∑

T∈D
−log D(T, T̂). (14)

Overall Loss. Totally, our training loss is defined as:

L = λ1Lcomp + λ2Lp + λ3Lmix + λ4Ladv. (15)

We empirically set the weights for each loss in our experi-
ments as: λ1 = 0.4,λ2 = 0.2,λ3 = 0.4,λ4 = 0.01.

5. Experiments
We implement our method using PyTorch [28] on a PC

with an Nvidia Geforce RTX 2080 Ti GPU. To minimize
the training loss, we adopt ADAM optimizer [19] to train
our network for 60 epochs with a learning rate 2e−4 and
batch size 2. After 60 epochs, we reduce the learning rate
to 1e−4 and add the unaligned dataset from ERRNet [46]
to fine-tune our model. The β1, β2 in ADAM are set to 0.5
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Dataset (size) Index (↑) Methods

Zhang et al.-F [57] BDN [50] RMNet [47] ERRNet-F [46] CoRRN-F [44] Kim et al. [18] IBCLN-F [23] Ours

Postcard (199) PSNR 21.497 20.460 19.833 22.374 20.866 23.055 23.421 23.724
SSIM 0.870 0.858 0.872 0.889 0.866 0.871 0.864 0.903

Object (200) PSNR 23.675 22.642 24.045 23.101 25.134 23.552 24.416 24.361
SSIM 0.885 0.857 0.847 0.876 0.912 0.879 0.889 0.898

Wild(55) PSNR 24.861 22.048 19.800 24.097 24.341 25.534 24.724 25.731
SSIM 0.886 0.828 0.885 0.880 0.893 0.890 0.871 0.902

Zhang et al.(20) PSNR 22.230 18.487 18.780 23.153 21.569 20.218 21.008 23.338
SSIM 0.800 0.729 0.708 0.809 0.807 0.735 0.760 0.812

Li et al.(20) PSNR 20.721 18.828 15.457 20.368 21.841 20.096 23.695 23.451
SSIM 0.765 0.738 0.732 0.771 0.805 0.759 0.804 0.808

Average(494) PSNR 22.752 21.374 21.315 22.810 23.049 23.298 23.882 24.179
SSIM 0.871 0.844 0.851 0.875 0.883 0.866 0.868 0.893

Table 1. Quantitative comparisons to state-of-the-art methods on real-world datasets. The best results are marked in red, and the second-best
results are marked in blue.

and 0.99, respectively. The network weights are initialized
using a normal distribution (mean:0, variance: 0.02), and
the iteration number N is set to 3, same as IBCLN [23]. Our
network has 10.926M parameters, its FLOPs are 111.63G,
which is comparable to IBCLN (130.88G) at each iteration.
In the inference stage, it takes about 0.068s to process an
input image of resolution 400× 540.
Training dataset. Our training dataset consists of both
synthetic and real-world data. For the synthetic data, we use
the images dataset from [4]. This dataset has approximately
13700 image pairs of size 256 × 256. With these pairs, we
adopt Eq. 6 and randomly sample α in [0.8, 1.0] to obtain
Ĩ. We then apply gamma correction [53] to {Ĩ, T̃, R̃} to
generate image triples {I,T,R}. For the real-world data,
there are a total of 540 image pairs, {I,T}, in our dataset,
including 200 pairs provided by the “Nature” dataset in IB-
CLN [23], 90 pairs provided by Zhang et al. [57] and 250
pairs provided by the unaligned dataset in ERRNet [46].
Following IBCLN [23], we feed the network with 4000
pairs (triples) in each epoch, including 2800 triples ran-
domly sampled from the synthetic data and 1200 pairs of
size 256 × 256 cropped from the real-world data. More-
over, our data augmentation can generate training images to
cover more real-world reflection types. The details can be
found in Sec.2 of the supplemental material.

5.1. Comparisons
To evaluate the performance of our method, we com-

pare it to seven state-of-the-art SIRR methods, including
Zhang et al. [57], BDN [50], RMNet [47], ERRNet [46],
CoRRN [44], Kim et al. [18], and IBCLN [23]. We use
PSNR and SSIM as metrics, where the higher metric value
means better performance. For fair comparisons, we report
their better performances either using their original trained
models or using models fine-tuned with our training dataset
if their training codes are available. The fine-tuned results
are denoted with a suffix ”-F”. Note that we do not fine-
tune the RMNet [47], as it requires additional alpha blend-
ing masks from a SynNet [47]. We also modify the code of
Kim et al. [18] to compute SSIM in RGB space.

Quantitative comparisons. Tab. 1 reports the perfor-
mance comparisons on five real-world datasets. Datasets in
the first three rows are all from SIR2 constructed in [41],
and the rest two datasets are from the evaluation set in
Zhang et al. [57] and the “Nature” test dataset in Li et
al. [23] respectively. It can be seen that our method is
ranked as top-1 on the Postcard, Wild, and Zhang et al.
datasets, top-2 on the Object (SSIM ranking) and Li et al.
(PSNR ranking) datasets. Moreover, our method achieves
the best average PSNR and SSIM scores. This verifies that
our method can achieve superior performance in various
real-world scenarios.
Qualitative comparisons. Fig. 6 shows the reflection re-
moval results of four existing models and ours. These im-
ages are from the “Nature” test dataset of IBCLN [23](rows
1-2), unaligned datasets of ERRNet [46](rows 3-5), and the
benchmark datasets SIR2 [41](rows 6-7). It can be seen
that existing methods typically fail to remove large-area re-
flections and strong highlights. In contrast, our method can
remove most undesirable reflections while preserving high-
frequency details in the transmission layer. More qualitative
results can be found in our supplemental material.

However, when the strong reflection regions are not cor-
rectly detected, our method still lacks cues to remove such
reflections. For instance, there are remained highlights in
the 4th row of our results in Fig. 6. As shown in Fig. 7, com-
pared to the detected rod-shaped reflection (blue boxes), the
two oval highlights (yellow boxes) are not completely de-
tected. Hence, they still appear in the removal result. Al-
though hard boundaries for these highlights exist in the in-
verse Laplacian map, our network still lacks enough context
information to classify such oval highlights as reflections.

5.2. Ablation Study
To better analyze our network’s architecture and evalu-

ate the importance of the loss functions, we perform abla-
tion studies by manipulating the model components, remov-
ing or replacing loss functions. The statistics of PSNR and
SSIM are obtained by evaluating the re-trained models in
these experiments.
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(a) Input (b) RMNet [47] (c) ERRNet-F [46] (d) Kim et al. [18] (e) IBCLN-F [23] (g) Ground-truth T(f) Ours

Figure 6. Qualitative comparisons between the proposed method and four latest state-of-the-arts.

(a) T (b) RCMap ^ (c) M (d) Ground-truth T

Figure 7. A failure case. M: the inverse Laplacian map using
learned Laplacian kernel. The reflected oval highlights are not cor-
rectly detected for the corrupted image in the fourth row of Fig. 6.

Evaluation of the network architecture. In Tab. 2, we
first show that three modules in our network, namely RDM,
TSM, and LSTM, all contribute to the SIRR performance
(first three rows). We then test six different choices in the
design of RDM, and the results are shown in the last six
rows in Tab. 2. Our current design choices of RDM lead
to the highest PSNR and SSIM scores. In addition, Fig. 8
illustrates the visual results of the ablation studies in Tab. 2.

Especially, to evaluate the effectiveness of Laplacian ker-
nel initialization (LKI), we conduct an experiment by re-
placing LKI with random kernel initialization (RKI) using a
Gaussian distribution (mean = 0, variance = 0.02) and can-
cel the gradient clipping. The PSNR/SSIM scores in the
last second row of Tab. 2 show that LKI is superior to RKI.
Moreover, a qualitative comparison is shown in the second

Model SIR2 [41] Zhang et al.[57] Li et al.[23]

PSNR SSIM PSNR SSIM PSNR SSIM
w/o RDM & TSM 23.237 0.881 22.784 0.800 22.607 0.778

w/o TSM 23.304 0.882 22.139 0.805 23.088 0.799
w/o LSTM 23.808 0.887 21.040 0.760 22.721 0.794
Ĉ from Ift 22.595 0.888 21.747 0.792 22.283 0.792

MLSM → SLSM 23.089 0.879 21.708 0.796 23.065 0.800
Fix MLSM 23.640 0.891 22.951 0.809 22.646 0.802

Laplacian → Edge 23.612 0.892 22.381 0.808 23.234 0.798
LKI → RKI 24.106 0.893 21.784 0.791 22.224 0.794

w/o GC in MLSM 23.901 0.891 23.051 0.812 23.300 0.806
Ours 24.117 0.901 23.338 0.812 23.451 0.808

Table 2. Network structure ablation study. w/o ∗: remove module
∗. M1 → M2: change M1 to M2. SLSM: Single-scale Laplacian
submodule. GC: gradient clipping. Edge: edge features, namely
the partial derivatives of the image with respect to x, y (refer to
Fig. 4). Ĉ from Ift: disable MLSM in RDM and predict RCMap
using the extracted features of [I, T̂i] before LSTM block. Fix
MLSM: disable the fine-tuning of Laplacian kernel parameters.

and fourth columns in Fig. 9. The kernel learned by RKI
tends to smooth out small-size reflections (yellow boxes) in
its RCMap, leading to a downgraded reflection-removal re-
sult. In contrast, ours can successfully detect and remove
the reflections. Moreover, the kernels learned by LKI and
RKI are available in Sec.3 of the supplemental material.
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(a) Input (b) w/o RDM & TSM (c) w/o TSM (d) RCMap ftfrom  I (f) Laplacian → Edge(e) Fix MLSM (h) Ours(g) w/o GC in MLSM

Figure 8. The visualization of reflection removal results according to the ablation study in Tab. 2.

(a) Input (b) RCMap [RKI] (c) RCMap [LB
Ĉ

] (d) RCMap [Ours]

(e) Ground-truth T (f) T [RKI] (g) T [LB
Ĉ

] (h) T [Ours]
Figure 9. RCMaps and the predicted transmission images using
RKI, LB

Ĉ
and our network.

(a) Input (b) Ours [th.=0.5] (c) ‖I − T‖ (d) ‖ I−T
T ‖

Figure 10. Calculated RCMaps. Ours [th.=0.5]: apply a threshold
(0.5) to our predicted RCMap.

Evaluation of loss functions. In Tab. 3, we report the per-
formance of our model re-trained with ablated loss terms
(first five rows). It can be seen that each loss term con-
tributes to the network’s performance. We hypothesize that
the performance drop after removing LSSIM is due to the
weight of SSIM loss is much larger than pixel loss in Lmix.

To verify the effectiveness of LĈ in detecting reflection-
dominated regions, we compare it with the raindrop re-
moval method in [30] that generates GT binary raindrop
masks for the training. Specifically, we replace the LĈ with
the combination of the binary cross-entropy (BCE) losses at
different iterations:

LB
Ĉ
=

∑

I,T∈D

N∑

i=1

θN−iLBCE(Ĉi,Cgt), (16)

where θ is set to 0.85. We follow the method in [30] to ob-
tain the GT RCMaps: Cgt. First, we subtract the input im-
age I with its corresponding transmission image T to obtain
an absolute residual image R̄ = ‖I−T‖, and then apply a
threshold γ to R̄gray to get a binary mask as Cgt, where γ
is set to max{R̄gray

min +β ∗(R̄gray
max −R̄gray

min ),β}, and R̄gray

is the gray-scale R̄. We re-train our model using LB
Ĉ

and set
the parameter β to 0.3 for the best performance. The choice
of β is evaluated in Sec.4 of the supplemental material.

As shown in Fig. 10, such a simple thresholding method
occasionally generates GT RCMaps (the third column in

Model SIR2 [41] Zhang et al. [57] Li et al. [23]

PSNR SSIM PSNR SSIM PSNR SSIM
w/o Lpixel 23.365 0.888 22.113 0.788 21.587 0.788

w/o LSSIM 15.653 0.673 17.652 0.746 15.197 0.642
w/o LP 22.725 0.880 22.219 0.804 22.778 0.812

w/o Lcomp 23.774 0.894 22.453 0.807 23.036 0.801
w/o Ladv 23.571 0.889 22.480 0.803 23.240 0.800
LĈ → LB

Ĉ
24.106 0.894 21.296 0.776 22.176 0.788

LB
Ĉ

& RKI 24.114 0.899 21.123 0.778 22.253 0.788
Ours 24.117 0.901 23.338 0.812 23.451 0.808

Table 3. Ablation study on Loss terms. w/o L: we remove each
loss term L and evaluate the corresponding re-trained model to
check its influence on the reflection removal results. LĈ → LB

Ĉ
:

replace LĈ with LB
Ĉ

. LB
Ĉ

& RKI: replace LĈ , LKI with LB
Ĉ

and
RKI respectively.
Fig. 10) that incorrectly label some transmission-dominated
regions with the reflection-dominated regions, even with
relative intensity method (the last column in Fig. 10, β =
0.1). We hypothesize that it is why our model based on LĈ
surpasses the other two variants that use Eq. 16 and RKI
in PSNR/SSIM scores, as shown in the last three rows of
Tab. 3. Besides, the third column of Fig. 9 illustrates that
the RCMap obtained under the supervision of LB

Ĉ
(β = 0.3)

contains mislabeling errors (red boxes), resulting in dam-
ages to non-reflection regions when estimating T̂. In Sec.5
of the supplemental material, we evaluate the detection ac-
curacy further and show that our method can well protect
non-reflection regions.

6. Conclusion
We develop a location-aware SIRR network to improve

the quality of SIRR results substantially. Its key feature is
that we leverage learned Laplacian features that can empha-
size the strong reflections’ boundaries to locate and remove
strong reflections, such as reflected highlights. The network
has an RDM that takes multi-scale Laplacian features as in-
puts to detect reflections roughly. In the future, we plan to
simplify our network’s design further to save the number of
parameters and improve its inference speed on the mobile
computing platform.
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