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Supplementary Material
This supplementary material provides more information on the
method details (Section 1), more results (Section 2), and visualization
of our interactive GUI (Section 3).

1 MORE METHOD DETAILS

1.1 Loss Functions for F𝑑
(1) Depth consistency loss: it penalizes the per-pixel difference be-
tween the rendered ground-truth depth map (denoted as D𝑔𝑡 ) and
the denoised depths D𝑟 𝑓 , which can be written as:

𝐿𝐷 =

𝑁∑︁
𝑖=1

L2 (d𝑖𝑟 𝑓 (𝑝), d
𝑖
𝑔𝑡 (𝑝)) . (1)

(2) Normal consistency loss: it penalizes the error of the computed
normal maps to enhance the details of D𝑟 𝑓 , which is:

𝐿𝑁 =

𝑁∑︁
𝑖=1

L1 (n𝑖𝑟 𝑓 (𝑝) − n𝑖𝑔𝑡 (𝑝)) + L1 (1, < n𝑖
𝑟 𝑓

(𝑝), n𝑖𝑔𝑡 (𝑝) >), (2)

where d𝑖
𝑟 𝑓

(𝑝) and n𝑖
𝑟 𝑓

(𝑝) denote the predicted depth value of D𝑟 𝑓

and normal vector of N𝑟 𝑓 , respectively, in pixel 𝑝 of view 𝑖 . N𝑟 𝑓

is the normal map computed from D𝑟 𝑓 . d𝑖𝑔𝑡 (𝑝) and n𝑖𝑔𝑡 (𝑝) are the
corresponding ground-truth depth value and normal vector. L1 and
L2 represent the smooth 𝐿1 loss and 𝐿2 loss, respectively.
(3) 3D consistency loss: it further constrains the consistency between
the point cloud fused from D𝑖

𝑟 𝑓
and the ground-truth point cloud,

to eliminate the artifacts in the subsequent depth fusion, as:

𝐿𝑃 = L𝑐 (P, P𝑔𝑡 ), (3)

where P = 𝐹 ({D𝑖
𝑟 𝑓
,K𝑖 ,RT𝑖 }𝑖=1,...,N) is the fused point cloud from

D𝑖
𝑟 𝑓
, and 𝐹 represents the depth fusion scheme. P𝑔𝑡 is the sam-

pled point cloud from the ground-truth 3D model. L𝑐 denotes the
chamfer loss.
The complete loss function for depth denoising can be written

as: 𝐿 = 𝐿𝐷 + 𝜆𝑁 𝐿𝑁 + 𝜆𝑃𝐿𝑃 , where 𝜆𝑁 and 𝜆𝑃 are the balancing
hyper-parameters.
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Fig. 1. The ray-voxel intersection and points sampling processes (a,b). We
use the Voxel Traversal Algorithm [Amanatides et al. 1987] to determine
the voxels, near and far points (𝑣𝑖 ) that are intersected with the ray (c). We
determine the intersected points (𝑞𝑖 ) of the child voxels with the ray (d).
For adaptive point sampling in rendering, the proportion of sampling points
varies at two different scales of voxels (b).

1.2 Ray-Voxel Intersection and Points Sampling
After the construction of two-layer T , to render a novel-view image,
we project rays from pixels of the target view 𝑡 , and perform Ray-
Voxel Intersection to identify voxels (in both levels of T ) that are
intersected with the rays, and perform Points Sampling to sample
the points inside the intersected voxels on the rays.
Ray-Voxel Intersection. As shown in Fig. 1(a), given an emitted

ray l, we detect the parent and child voxels intersected by l, as
follows: (1) Use the voxel traversal algorithm [Amanatides et al.
1987] to detect the valid parent voxels along the ray l, according
to the index volume V2

𝑖𝑑𝑥
, and record the depth values of the ray-

voxel intersected points (near and far) at the target view 𝑡 . In the
case shown in Fig. 1(c), there are a total of 4 valid parent vox-
els intersected with l, and the recorded near and far depths are:
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D𝑛𝑒𝑎𝑟 = 𝑑 ({v𝑖 }𝑖=0,1,2,4,5,RT𝑡 ) and D𝑓 𝑎𝑟 = 𝑑 ({v𝑖 }𝑖=1,2,3,5,6,RT𝑡 ),
where 𝑑 (·,RT𝑡 ) is a projection function to obtain the depth value
of a 3D point. (2) Continue to use the voxel traversal algorithm
to detect all valid child voxels and record their near and far depth
lists, noted as D′

𝑛𝑒𝑎𝑟 and D′
𝑓 𝑎𝑟

, as shown in Fig. 1(d). (3) Merge
all near and far depth values into lists D𝑎𝑙𝑙

𝑛𝑒𝑎𝑟 = [D𝑛𝑒𝑎𝑟 ,D′
𝑛𝑒𝑎𝑟 , ...]

and D𝑎𝑙𝑙
𝑓 𝑎𝑟

= [D𝑓 𝑎𝑟 ,D′
𝑓 𝑎𝑟

, ...], respectively, as the final ray-voxel
intersection results, to determine the points sampling range.
Points Sampling. We sample points between all near and far

points (e.g., {v0, v1}, {q0, q1}) along the ray l for rendering. To
allocate the number of sampling points for each valid voxel, we first
compute the assigned weight for the 𝑖-th voxel as:

𝑤𝑖 =
(d𝑓 𝑎𝑟 (𝑖) − d𝑛𝑒𝑎𝑟 (𝑖)) · s𝑖∑𝑁𝑣

𝑘
(d𝑓 𝑎𝑟 (𝑘) − d𝑛𝑒𝑎𝑟 (𝑘)) · s𝑘

, (4)

where 𝑁𝑣 = 𝑙𝑒𝑛(D𝑎𝑙𝑙
𝑛𝑒𝑎𝑟 ) is the number of valid voxels. d𝑓 𝑎𝑟 (𝑖) and

d𝑛𝑒𝑎𝑟 (𝑖) represent the far and near depths of D𝑎𝑙𝑙
𝑓 𝑎𝑟

and D𝑎𝑙𝑙
𝑛𝑒𝑎𝑟 at

voxel 𝑖 . s𝑖 is the size scale of voxel 𝑖 . In order to allocate more
sampling points for the child voxels, we set the scale s𝑖 to 4, so that
more points near the surface will be sampled, as shown in Fig. 1(b).
Given the total number𝑀 of sampling points for ray l, the number
of sampled points in voxel 𝑖 is then computed as:

𝑚𝑖 = max(⌊𝑤𝑖 ·𝑀⌋, 1) . (5)

We allocate points along the ray direction for each voxel to ensure
that voxels on the surfaces closest to the source of the ray are always
sampled. If

∑
𝑖𝑚𝑖 < 𝑀 , we reassign the remaining points𝑀 −∑

𝑖𝑚𝑖

according to the previous allocating order. Finally, we determine
depth 𝑑 𝑗 of the 𝑗-th sampling point within the voxel 𝑖 via:

𝑑 𝑗 = d𝑛𝑒𝑎𝑟 (𝑖) +
d𝑓 𝑎𝑟 (𝑖) − d𝑛𝑒𝑎𝑟 (𝑖)

𝑚𝑖 + 1 · ( 𝑗 + 1), (6)

where 𝑗 starts from 0, and𝑚𝑖 sampled points are evenly distributed
in voxel 𝑖 .
The whole process has been implemented with CUDA accelera-

tion. Given 5122 rays, it takes around 10ms and 2ms for ray-voxel
intersection and points sampling, respectively.

1.3 Loss Functions for F𝑏
To train the blending network F𝑏 , we penalize the per-ray error
between the final predicted color patch P̂r and the ground-truth
color patch P∗r using both L1 and SSIM [Wang et al. 2004] losses as:

𝐿𝐵 =
∑︁
r∈𝑅

𝜇1 · L1 (P̂r, P∗r ) + 𝜇2 · (1 − SSIM(P̂r, P∗r )), (7)

where P̂r = {Ĉr(𝑖, 𝑗 ) |1 < 𝑖, 𝑗 < 𝑆𝑝𝑎𝑡𝑐ℎ} ∈ R𝑆𝑝𝑎𝑡𝑐ℎ ·𝑆𝑝𝑎𝑡𝑐ℎ ·3 is the color
patch with size of 𝑆𝑝𝑎𝑡𝑐ℎ ·𝑆𝑝𝑎𝑡𝑐ℎ (set to 128). (𝑖, 𝑗) indicates the pixel
index of the sub-rays inside the patch. 𝜇1 and 𝜇2 are the balancing
terms. Compared to the ray-independent color loss function (Eq. 5
in our main paper), 𝐿𝐵 used for F𝑏 can better learn the relationship
between rays within a patch. Besides the loss for measuring the
per-ray error, we also incorporate a feature loss (denoted as 𝐿𝑓 𝑡 )
based on a pre-trained VGG-16 network [Simonyan and Zisserman

2014], to further improve the rendered quality, as:

𝐿𝑓 𝑡 =
∑︁
r∈𝑅

L𝑉𝐺𝐺 (P̂r, P∗r ), (8)

where L𝑉𝐺𝐺 denotes the L1 loss between VGG features, and we
use the three features fed to the first three MaxPool2d layers to
compute this loss. The overall training loss for F𝑏 becomes: 𝐿𝐵 +
𝜇𝑣𝑔𝑔 · 𝐿𝑓 𝑡 , where the balancing term 𝜇𝑣𝑔𝑔 is set to 0.01 empirically
in our experiments. We train F𝑏 independently without updating
the parameters of our SRONet.

1.4 Our Capturing System
The capturing system comprises 8 Kinect cameras, which are evenly
placed around the performers in a circle at 45-degree intervals,
and each camera is approximately 1.5m away from the actor. The
lighting system contains 4 bottom spotlights and 4 ceiling lights,
evenly placed around the performers for global illumination. Before
capturing, the optical axis of each camera faces the actor, enabling
actors to perform a series of actions at the center. The 8 Kinect
cameras are pre-calibrated using the iterative closest point (ICP)
method, and synchronized at 15 frame-per-seconds.
For novel-view rendering evaluation, we use RGBD images of 4

fixed perspective views (the interval between two adjacent views is
90 degrees, and the indexes of cameras are 0,4,6,7, respectively) as
inputs. RGBD images of the other four views (i.e., indexes of 1,2,3,5)
are used to evaluate rendering quality.

According to themulti-camera-sync provided byMicrosoft Kinect-
dk, we can prevent the interference between lasers by setting the
capture offset to above 160𝜇s. For input depths, we simulate the
depth noise based on z-Distance by choosing a function (e.g., 1.5𝑧2−
1.5𝑧 + 1.375) according to the Kinect paper [Fankhauser et al. 2015].
We also add larger Gaussian noise (average scale is 1.5cm) and holes
(width 3 pixels on average) to cover the possible depth noise cases.

1.5 Implementation Details
We have implemented SAILOR with PyTorch [Paszke et al. 2017]
and CUDA acceleration. We train our model (i.e., depth denoising
network F𝑑 , SRONet, and neural blending module F𝑏 ) on 2 NVIDIA
RTX3090 GPUs using the ADAM optimizer [Kingma and Ba 2014].
The 𝛽1, 𝛽2 in ADAM optimizer are set to 0.5 and 0.99, respectively.
We train F𝑑 for 10 epochs with a batch size of 6 and a learning
rate of 2𝑒−4. We train the SRONet for 20 epochs with a batch size
of 4 and a learning rate starting from 1𝑒−4 and decaying by half
every 5 epochs. We train the F𝑏 for 10 epochs with a batch size of 2
and a learning rate starting from 1𝑒−4 and decaying by half every 5
epochs. We set the weight balancing parameters, i.e., (𝜆𝑁 and 𝜆𝑃 )
in F𝑑 to (0.5 and 0.01); (𝜇𝑜 , 𝜇𝑐 , and 𝜆𝐷 ′ ) in SRONet to (0.5, 1.0, and
1.0); (𝜇1, 𝜇2, and 𝜇𝑣𝑔𝑔) in F𝑏 to (0.4, 0.6 and 0.01), respectively. We
set the hyper-parameters, 𝛼 and 𝛾 in two-layer tree T to 40 and
0.01, respectively. The number of sampling points 𝑀 is set to 48
for training and evaluation. The truncated PSDF value 𝛿𝑝 is set to
0.01. 𝜎𝑣 is set to 200. All the rendering results are of 1𝐾 (1024 × 1024)
resolution.
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Fig. 2. Comparisons on the number of views during inference. 4 views (our setting) (a). Single view (b). 2 views (c). 6 views (d). 8 views (e). 10 views (f). GT (g).

1.6 Training and Inference Details
The training of SAILOR can be separated into three stages, as fol-
lows:

(1) We first train our depth denoising network F𝑑 . For the images
data, we sample the image tuples {I𝑖 ,D𝑖 ,D𝑖

𝑔𝑡 }𝑖=1,...,N at 90-degree
intervals from our training set (this sampling manner is related to
our capture setting, where N = 4 and the RGBDs are downsampled
to a resolution of 5122). For 3D consistency loss, we randomly sample
the point cloud P𝑔𝑡 (approx. ∼ 2 × 105 points) of the performer. F𝑑
is trained for 10 epochs with a batch size of 6.

(2) We train our SRONet after building the two-layer tree for the
target performer. Given the sampled image tuples, we randomly se-
lect two novel views {I𝑛0 , I𝑛1 } from the remaining 60−N views, and
sample 1680 rays in each novel view 𝑛𝑖 (𝑖 = 1, 2) for each mini-batch,
where 60 is the number of the images rendered for each 3D scan in
our training set. We obtain the ground-truth color vector C∗ (l) and
the depth value D∗ (l) for each emitted ray l to train our SRONet.
Besides, we sample 8000 3D points around the performer according
to the sampling strategy of PIFu [Saito et al. 2019] and obtain the
corresponding GT occupancy value o∗ for synergically training our
OccNet. The SRONet is trained for 20 epochs with a batch size of
4, while the learning rate is reduced by a factor of 2 after every 5
epochs.
(3) At last, we train our neural blending module F𝑏 , where the

parameters of SRONet are fixed during training. We sample 1282
rays to form a ground-truth color patch P∗r from a novel view 𝑛𝑖 to
train F𝑏 . F𝑏 is trained for 10 epochs with a batch size of 2, while
the learning rate is reduced by a factor of 2 after every 5 epochs.
For inference, we use 4 RGBD images as input. The interval be-

tween two adjacent views is set to 90 degrees, and the distance
between each camera and the performer is approximately 1.5m.
When evaluating our method on the THuman2.0 test set, we gener-
ate noise of 5 different degrees (i.e., 0.25cm, 0.5cm, 1.0cm, 1.5cm of
Gaussian standard deviation) on the ground-truth depth of the 3D
meshes for both rendering and reconstruction. In our real-caputred
data, the performer stands at the center of the circle that is en-
closed by four cameras. We use RGBD images of 4 fixed perspective

views as input to SAILOR, of which the indexes of cameras are
0,4,6,7, respectively. RGBD images of the other four views (i.e., in-
dexes of 1,2,3,5) are used to evaluate rendering quality. We crop
and down-sample the captured RGBD images to a resolution of 1𝑘2,
as the inputs for our method. For the depth denoising, two-layer
tree building, and SRONet, the input RGBD images continue to be
downsampled to a resolution of 5122 for acceleration.

1.7 Network Structures
(1) Our depth denoising network F𝑑 is Unet based, similar to the
network structure in GTPIFu [Dong et al. 2022]. As shown in Fig. 3,
our F𝑑 adopts two individual HRNetV2-W18-Small-v2 networks to
process the RGB and depth data, separately. Here, we only use
the first three stages of HRNet, which leads to a lighter backbone
network design. In addition, we remove the CAM and GAMmodules
that are proposed in GTPIFu for processing the geometric features.
Only the ASPP [Chen et al. 2017] and ResCBAM [Woo et al. 2018]
modules are retained to fuse the RGB and depth features, and the
fused features are sent to the previous stages of the backbone to
form a UNet-like structure. At last, the output map is masked by
the full-body binary mask to only preserve the body part. For the
RGBDs inputs of our F𝑑 , we normalize the RGB data to [−1, 1] via
2 ∗ I𝑖 − 1, and the depth data to [−1, 1] using the maximum and
minimum values (i.e., 𝑑𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛) of the effective depth values. We
denote the normalized depth map as D𝑖

𝑛 for view 𝑖 , and this process
can be formulated as:

d𝑖𝑛 (p) =
{

d𝑖 (p)−𝑑𝑚𝑖𝑑

𝑑𝑚𝑎𝑥−𝑑𝑚𝑖𝑛
d𝑖 (p) > 𝜏

−1 𝑒𝑙𝑠𝑒
, (9)

where d𝑖𝑛 (p) is the normalized depth value of pixel p in the nor-
malized depth map D𝑖

𝑛 , and d𝑖 (p) is the corresponding raw depth
value. The depth middle value 𝑑𝑚𝑖𝑑 = (𝑑𝑚𝑖𝑛 +𝑑𝑚𝑎𝑥 )/2.0. The depth
threshold 𝜏 is set to 0.1 to distinguish the invalid depth values. The
output value o𝑖𝑛 (p) of F𝑑 falls in [−1, 1], and we unnormalize this
value via (o𝑖𝑛 (p) ∗ (𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛) + 𝑑𝑚𝑖𝑑 ) ∗m(p) to obtain the de-
noised depth value d𝑖

𝑟 𝑓
(p), where m(p) is the mask value of pixel p

of the full-body binary mask.
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Fig. 3. The structure of our depth denoising network. Layer 1-3 correspond
to the first three stages of HRNetV2-W18-Small-v2 [Wang et al. 2021a].

(2) In SRONet, we adopt two individual HRNetV2-W18-Small-v2
to encode the RGB and depth images. The channel number of output
RGB and depth features are set to 16, respectively. For all implicit
functions 𝑓𝑖 (𝑖 = 1, ..., 5), we visualize their structures in Fig. 4(first
two rows). For the hydra attention block H , the number of input
feature channels is 32.
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Fig. 4. Network architecture of our implicit functions in OCCNet (a), Color-
Net (b), and Neural Blending Operation (c). All networks are implemented as
MLPs , and each inner fully connected layer in the MLP is followed by ReLU
activation. The final activation functions of 𝑓2, 𝑓5 and 𝑓6 are the Sigmoid
functions.

(3) In Neural Blending Operation F𝑏 , the high-resolution RGB en-
coder is a UNet-like network composed of 5× 5, 3× 3 convolutional
encoders, bilinear interpolation sampling function, and skip con-
nections. The channel number of the output high-resolution RGB
feature is set to 16. Structure of the implicit function (i.e., 𝑓6) used
in F𝑏 is visualized in Fig. 4(3rd row).

Models THuman2.0 [Yu et al. 2021b] Dataset

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
Hydra Att.→ Self Att. 34.801 0.964 0.317 0.465

Ours 34.882 0.969 0.354 0.392

Models Our Real Captured Dataset

PSNR ↑ SSIM ↑ LPIPS ×10−1 ↓ MAE×10−2 ↓
Hydra Att.→ Self Att. 29.845 0.954 0.482 0.816

Ours 30.228 0.968 0.454 0.634

Table 1. Ablation Study on the𝑇𝐻𝑢𝑚𝑎𝑛2.0 dataset [Yu et al. 2021b] (upper
part) and our real captured data (lower part). The best results are marked
in bold.

2 MORE RESULTS

2.1 More Experimental Results
Comparisons of the view number. We conduct an experiment to

evaluate the view number (Fig. 2) during inference, by changing the
number of input RGBD images. As the number of views increases,
the texture details gradually improve, especially for the invisible or
some small regions (e.g., black dashed boxes). When the number of
inputs is 1 or 2, these regions cannot be well handled, or our model
can only work near the input views. For the single-Kinect setup
(front view), the PSNR/SSIM/LPIPS of two adjacent test views (45
degrees) is 25.356/0.939/0.0588 on real-captured data in Fig.12 (in
the main paper). When the number of inputs is greater than 8, there
is no significant improvement in texture details, but the shadow
of rendered results becomes heavier. Here, we choose to adopt the
4-view capture setting.

Quantitative comparisons on our real-captured dataset. Tab. 2
reports the detailed rendering comparisons for 10 independent
parts (of different actions) of our real-captured dataset. It shows
that our method generally outperforms 6 existing methods in terms
of the PSNR and SSIM metrics.

Hydra Attention for Feature Fusion: H . We evaluate the effective-
ness of Hydra attention [Bolya et al. 2023] for RGB features fusion,
by replacing it with the popular self-attention [Vaswani et al. 2017]
(denoted as “Hydra Att.→Self Att.”). The above Table shows that
the quantitative performance slightly drops. Fig.14(f) (in the main
paper) shows that the colors may also distort slightly. Considering
that Hydra Att. contains much fewer parameters, and is an operation
with linear computational complexity compared to Self Att. (𝑂 (𝑇𝐷)
v.s., 𝑂 (𝑇 2𝐷)), leading to a faster feature fusion, we incorporate it
into our method.

2.2 Portrait Capturing Setting and More Results
Settings of Portrait Reconstruction and Rendering. We use 3 Azure
Kinect-V4 sensors to capture the portrait RGBD images. These three
cameras are placed in front, left-front, and right-front of the subject,
respectively, on the same horizontal line. The distances between
the two adjacent cameras are approximately 40cm. The subject
is invited to sit in front of and face the middle camera to make
facial expressions for capture. We set the number of input views of
SAILOR to 3 and apply it to process the inputs directly (i.e., without
re-training or fine-tuning).
We provide more of our portrait reconstruction and rendering

results, using Point Spread Okulo P1S camera. Fig. 5 illustrates the
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Dataset (size) Index Methods

PixelNeRF IBRNet MPSNeRF NHP NPBG++ PIFu(RGBD) Ours

Rocking & Walking (230)
PSNR ↑ 27.012 28.344 27.930 28.486 27.769 28.448 30.920
SSIM ↑ 0.909 0.934 0.928 0.938 0.932 0.948 0.965
LPIPS ↓ 0.146 0.121 0.114 0.113 0.0964 0.0688 0.0451

Kung Fu (230)
PSNR ↑ 22.655 24.131 22.760 22.709 24.148 27.147 28.624
SSIM ↑ 0.903 0.926 0.913 0.927 0.913 0.953 0.958
LPIPS ↓ 0.140 0.110 0.113 0.110 0.0879 0.0422 0.0350

Rocking & Undressing (150)
PSNR ↑ 27.038 29.026 29.265 29.325 28.898 28.133 32.139
SSIM ↑ 0.915 0.942 0.942 0.946 0.943 0.955 0.968
LPIPS ↓ 0.152 0.126 0.111 0.116 0.0976 0.0808 0.0453

Swinging_1 (110)
PSNR ↑ 20.797 23.706 22.350 20.363 23.879 27.833 28.389
SSIM ↑ 0.905 0.925 0.921 0.930 0.900 0.954 0.962
LPIPS ↓ 0.157 0.109 0.122 0.118 0.0833 0.0252 0.0259

Swinging_2 (120)
PSNR ↑ 21.938 24.669 24.055 22.986 24.665 27.434 29.065
SSIM ↑ 0.890 0.913 0.910 0.919 0.915 0.938 0.948
LPIPS ↓ 0.151 0.103 0.108 0.0993 0.0693 0.0317 0.0344

Punching (120)
PSNR ↑ 25.009 26.737 26.054 25.440 27.256 29.338 29.931
SSIM ↑ 0.916 0.933 0.926 0.936 0.935 0.947 0.966
LPIPS ↓ 0.128 0.098 0.102 0.0961 0.0677 0.0320 0.0294

Swinging & Walking (126)
PSNR ↑ 20.669 23.640 22.266 21.021 24.025 27.302 30.036
SSIM ↑ 0.916 0.932 0.928 0.937 0.918 0.954 0.968
LPIPS ↓ 0.153 0.104 0.117 0.106 0.0677 0.0280 0.0275

Lifting Legs (120)
PSNR ↑ 22.023 24.387 23.906 22.612 24.960 27.572 29.060
SSIM ↑ 0.898 0.917 0.915 0.921 0.915 0.938 0.955
LPIPS ↓ 0.156 0.107 0.111 0.108 0.0741 0.0319 0.0348

Stretching_1 (106)
PSNR ↑ 23.950 25.853 25.259 24.173 25.508 29.062 30.224
SSIM ↑ 0.905 0.924 0.922 0.928 0.918 0.953 0.956
LPIPS ↓ 0.143 0.106 0.105 0.109 0.0760 0.0298 0.0360

Stretching_2 (200)
PSNR ↑ 24.568 26.927 25.939 24.991 26.879 30.050 30.597
SSIM ↑ 0.917 0.936 0.938 0.941 0.935 0.953 0.967
LPIPS ↓ 0.140 0.102 0.102 0.104 0.0707 0.0308 0.0353

Table 2. Comparisons of rendering results on our captured dataset, produced by our method and existing methods, i.e., PixelNeRF [Yu et al. 2021a],
IBRNet [Wang et al. 2021b], MPSNeRF [Gao et al. 2022], NHP [Kwon et al. 2021], NPBG++ [Rakhimov et al. 2022] and PIFu(RGBD) [Saito et al. 2019]. The best
and second best results are marked in bold and underline, respectively.

results. This demonstrates the robustness of our method for different
capturing cameras, and the ability to reconstruct some exaggerated
expressions and some attached objects (e.g., pillow).

Fig. 5. We apply SAILOR to portrait rendering and reconstruction using
Point Spread Okulo P1S camera. Note that our method can handle some
exaggerated expressions and some attached objects (e.g., pillow). The dis-
played images are the input depth maps, our rendering, and reconstruction
results, respectively. The rendering results are selected from novel views.

3 THE INTERACTIVE GUI
We design an interactive GUI for the usage of SAILOR, as shown in
Fig. 6. In our GUI, SAILOR can generate free-view rendering results
with a latency of less than 100ms. When the camera-target distance
in the novel view is less than 80% of the average distance in the
input views, exceeding the original sampling rate, we will perform
bilinear interpolation to obtain the zoomed rendering results.

73.391ms 73.711ms

73.641ms 95.456ms

Fig. 6. Visualization of our interactive GUI. Our system can render full-body
(upper row) and portrait (bottom row) videos in novel views within 100ms
per frame.
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